Effects of Salinity Level and Irrigation Rate on Kentucky Bluegrass (Poa pratensis L.) Growth and Salt Accumulation in Sand Growing Media Established Over the Reclaimed Saline Soil

염해지 토양을 기반으로 조성된 모래 지반구조에서 관수용수의 량 및 염농도에 따른 토양내 염류 집적과 켄터키 블루그래스의 생육에 미치는 영향

  • 라하유 (세벨라스마렛대학교 토양학과) ;
  • 양근모 (단국대학교 녹지조경학과) ;
  • 최준수 (단국대학교 녹지조경학과)
  • Received : 2011.04.15
  • Accepted : 2011.05.13
  • Published : 2011.06.30

Abstract

The purpose of this study was to obtain information on rates and salinity levels of irrigation for growth of Kentucky bluegrass by minimizing the hazard of salt accumulation in the sand based growing medium. Root zone profile consists of 20 cm sand based top soil, 20 cm of coarse sand as layer to interrupt capillary rise and 10 cm of reclaimed paddy soil as a base of the root zone profile. Topsoil was a mixture of dredged sand and peat with a ratio of 95%: 5% by volume. The columns were soaked into 5 cm depth saline water reservoir with salinity level of 3-5 $dSm^{-1}$. Salinity levels of irrigation water were 0, 2 and 3 $dSm^{-1}$. Irrigation rates were 3.8, 5.7 and 7.6 mm $day^{-1}$ which were equivalent to 70%, 100% and 130% of average ET (evapotranspiration) rate of Kentucky bluegrass, and irrigation interval was 3 days. Salt accumulation was due to irrigated water and moved up water from shallow water base. At the end of second year, the accumulation of salt in the rootzone showed ECc of3.86, 4.7 and 5.1 $dSm^{-1}$, and SAR of 19.2, 23.9 and 27.5 when the salinities were 0, 2 and 3 dS $m^{-1}$, respectively. Irrigation rates of 100% and 130% of ET rate with saline water did not decrease ECe and SAR in growing media. The growth of KEG was influenced by irrigation rate in the $1^{st}$ year, however, salinity level was more critical in the $2^{nd}$ year. Compared to non-saline water, saline water of 2 and 3 dS $m^{-1}$ resulted in decreased visual quality by 3.2% and 16.5%, by 6.4% and 39.3% in clipping weight, and by 5.5% and 5.0% in root mass, respectively.

본 연구는 염해지 토양을 기반으로 조성된 모래 지반구조에서 켄터키 블루그래스의 염해 경감을 위한 관수량 및 관수용수의 염 수준 설정에 관한 정보를 얻고자 수행되었다. 시험에 사용된 용기는 바닥에 10 cm 높이로 간척지 논토양을 설치 하였으며, 그 위에 20 cm 높이로 염류 차단을 위해 왕사를 설치하였다. 상토는 20 cm 높이로 세사를 설치 하였으며, 세사에 유기물이 부피비로 5%가 되도록 혼합하여 조성하였다. 상기 용기들은 전기전도도(ECw)가 3-5 $dSm^{-1}$ 수준인 물에 5 cm 깊이로 침지 처리하였다. 조성된 용기에 켄터키 블루그래스 멧장을 식재하였다. 관수용수의 염처리는 전기전도도가 각각 0, 2 and 3 $dSm^{-1}$의 농도로 수행되었다. 관수량은 켄터키 블루그래스의 일 증발산량 대비 70% (3.8 mm $day^{-1}$), 100% (5.7 mm $day^{-1}$), 그리고 130% (7.6 mm $day^{-1}$)의 3처리로 하였다. 관수는 3일 간격으로 수행하였다. 상토내 염류의 축적은 관수용수와 모세관 현상에 따른 염 집적이 원인이 되었다. 시험 2차년도 조사시 관수용수의 처리 농도(ECw)가 0, 2, 3 $dSm^{-1}$ 일 때 각 상토의 전기전도도는 (ECe) 3.86 $dSm^{-1}$, 4.7 $dSm^{-1}$ 그리고 5.1 $dSm^{-1}$ 수준으로 조사되었으며, SAR은 19.2, 23.9, 27.5로 조사되었다. 관수 량의 경우는 염이 포함된 물을 증발산량의 100%와 130% 살포시는 켄터키 블루그래스 재배 토양내 ECe와 SAR 경감 효과는 없었다. 그러나 실험 1년 차의 경우 관수량이 증가할수록 켄터키 블루그래스의 생육량은 증가되었다. 2년차 조사에서는 켄터키 블루그래스의 생육이 염농도에 영향을 받는 것으로 조사되었다. 수돗물에 (0 $dSm^{-1}$) 비해 전기전도도가 2와 3$dSm^{-1}$인 물을 관수시 가시적 품질이 각각 3.2%, 16.5% 감소하는 결과를 보였으며, 예지물의 건물중은 각각 6.4%, 39.3%가 감소하는 결과를 보였다. 또한 뿌리 건물중은 각각 5.5%, 5.0% 감소하는 결과를 보였다.

Keywords

References

  1. Austin, R.N. 2005. Chemical reactivity in the marine environment. CHEM 108b. laboratory. USA.
  2. Bastug, R.H. and D. Buyuktas. 2003. The effects of different irrigation levels applied in golf courses on some quality characteristics of turfgrass. Irrig. Sci. 22:87-93. https://doi.org/10.1007/s00271-003-0073-7
  3. Beard, J.B. 1973. Turfgrass: Science and culture. Prentice-Hall. Englewood Cliffs, NJ.
  4. Brown, P. 2000. Basic of evaporation and evapotranspration. Turf Management series I. Univ of Arizona. College Agriculture. Tucson, Arizona 85721.
  5. Carrow, R.N. and R.R. Duncan. 1998. Salt- affected turfgrass sites: assessment and management. Published by John Wiley and Sons, Inc. New Jersey.
  6. DaCosta, M. and B. Huang. 2006. Deficit irrigation effects on water use characteristics of bentgrass species. Crop Sci. 46(4):1779-1786. https://doi.org/10.2135/cropsci2006.01-0043
  7. Ebdon, J.S., A.M. Petrovic, and R.W. Zobel. 1998. Stability of evapotranspiration rates in Kentucky bluegrass cultivars across low and high evaporative environments. J. Crop Science Society of America. 38:135-142.
  8. Feldhake, C.M. 1984. Turfgrass evapotranspiration. Reponses to deficit irrigation. Agron. J. 76:85-89. https://doi.org/10.2134/agronj1984.00021962007600010022x
  9. Freddie, C., Y.L. Waltz, L. Quisenberry, and L.B. McCarty. 2003. Physical and hydaulic poperties in the rootzone mixes amended with inorganics for golf putting green. Agron. J. 95:395-404. https://doi.org/10.2134/agronj2003.0395
  10. Grattan, S.R., C.M. Grieve, J.A. Poss, P.H. Robinson, D.L. Suarez, and S.E. Benes. 2004. Evaluation of slat-tolerant forages for sequrntialwaer reuse system. J. Biomass production. Agr. Water Manage. 70: 109-120. https://doi.org/10.1016/j.agwat.2004.04.010
  11. Gross, J P. 2008. A Step-by-step guide for using recycled water. An outline of the cost and maintenance practices necessary to manage this valuable resource. USGA. Green Section Record. March-April p.2-8.
  12. Guizar. S., M.A. Khan, and S.A. Unger. 2003. Effect of salinity on growth, ionic content and plant-water status of Aeluropus logopoides. J. Communcation Sil Sci. and Plant Analysts 34:1657-1668. https://doi.org/10.1081/CSS-120021303
  13. Hach, C. 1996. Spectrophotometer soil and irrigation water portable laboratory manual. Js/cth 12-1-96.1 ED. Printed in USA.
  14. Harivand, M.A., J.D. Butler, and L.Wu. 1992. Salinity and turf-grass culture. ASA-CSSA-SSSA.667 S. Madion. USA. Turfgrass-agronomy monograph no.32.
  15. Hillel, D. 1990. Environtmental soil physics. Academic Press. Amsterdam. Boston. London. Tokyo.
  16. Huang, B. 2008. Cool season grass, evapotranspiration rate, warm season grass, water conservaion. Ata Horticulturae 783:221-228.
  17. Huck, M., R.N. Carrow, and R.R. Duncan. 2000. Effluent water: nightmare or dream come true? USGA Green Section Record, March/April 38(2):15-29.
  18. Jordan, J.E., R.H. White, D.M. Vietor, T.C. Hale, J.C. homas, and M.C. Engelke. 2003. Effect of irrigation frequency on turf quality, shoot density, and root length density of five bentgrass cultivars. Crop Sci.43:282-287. https://doi.org/10.2135/cropsci2003.0282
  19. Jorenush, M. H. and A. R. Sepaskhah. 2003. Modelling capillary rise and soil salinity for shallow saline water table under irrigated and non-irrigated conditions. Department of Irrigation, College of Agriculture Shiraz University. I.R. Iran.
  20. Kjelgren, R., L. Rupp, and D. Kilgren. 2000. Water conservation in urban landscapes. Hort. Science 35:1037-1040.
  21. Kim, J.B., G.M. Yang, and J.S. Choi. 2009. Effects of capillary water interruption layer on the growth of zoysiagrasses and cool-season turf grasses in reclaimed land. Kor. Turfgrass Sci. 23(1):35-44.
  22. Lee, G.J., R.N. Carrow, and R.R. Duncan. 2005. Growth and water relation response to salinity stress in halophytic seashore paspalum ecotype. J. Scientia Hart. 104: 221-236. https://doi.org/10.1016/j.scienta.2004.08.011
  23. Marcum, K.B. 2006. Use of saline and non-potable water in the turf grass industry; constraints and developments. J. Agriculture Water Manag. 80:132-146. https://doi.org/10.1016/j.agwat.2005.07.009
  24. McCoy, 2006. Golf course soils and water science. 215A Williams hall 1680 Madison Avenue. Ohio State Univ. USA.
  25. Miller, D.E. 1969. Moisture retention by soil with coarse layers in the profile. Soil Sci. Soc. Am. J. 27:586-589.
  26. Mzezewa, J., J. Gotosa, and B. Nyamwanza. 2003. Characteristication of a sodic soil catena for reclamation and improvement strategies. Geoderma J. 113:161-175. https://doi.org/10.1016/S0016-7061(02)00337-3
  27. Nabati, D.A., R. E. Schmidt, and D.J. Parrish. 1994. Alleviation of salinity stress in Kentucky bluegrass by plant growth regulators and iron. J. CSSA. Crop Sci. 34:198-202. https://doi.org/10.2135/cropsci1994.0011183X003400010035x
  28. Pessarakli, M., K.B. Marcum, D.M. Kopee, and Y.L. Qian. 2004. Interractive effect of salinity and primo on the growth of Kentucky bluegrass. Turtgrass and ornamental research report. Univ. Of Arizona Coil. USA.
  29. Poss, J.A., W.B. Russell, S.A. Bonos, and C.M. Grieve. 2010. Salt tolerance and canopy reflectance of kentucky bluegrass cultivars. HortScience 45(6):952-960.
  30. Qian, Y.L. and M.R. Suplick, 2001. Interactive effects of salinity and temperature on Kentucky bluegrass and tall fescue seed germination. Int. Turfgrass Soc. Res. J. 9:334-339.
  31. Qian, Y.L., R.F. Follett, S. Wilhelm, A.J. Koski, and M.A. Shahba. 2004. Carbon isotop discrimination of three Kentucky bluegrass cultivars with contrasting salinity tolerance. Agron. J. 96:571-575. https://doi.org/10.2134/agronj2004.0571
  32. Rahayu, G.M. Yang, and J.S. Choi. 2010. Effects of interruption layer for capillary rise on salt accumulation and Kentucky bluegrass (Poa pratensis) growth in sand growing media over the reclaimed saline saoiL Kor. Turtgrass Sci. 24(2): 106-116.
  33. Shainberg, I., M.E. Sumner, WP. Miller, M.P.W Farina, M.A. Pavan, and M.V. Fey. 1989. Use of gypsum on soils: A review, p.1-111. In: B.A.Stewart(ed.). Advanced in Soil Science V. 9 Springer-Verlag New York.
  34. Silvertooth, J.C. 2005. Saline and sodic soil management in irrigated crop production system. http://cals.arizona.edu/crops/cotton/soilmgt/saline.. html.
  35. Sutanto, R. 1995. Physical-chemical of soil; concept of soil developments and diagnostic horizon formation. Soil Sci. Dept. Gadjah Mada Univ. Indonesia.
  36. Taylor, D.H., S.D. Nelson, and C.F. Williams. 1993. Sub root-zones layering effects on water retention in sport turf profiles. Agron. J. 85:626-630. https://doi.org/10.2134/agronj1993.00021962008500030020x
  37. Tester, M. and R. Davenport. 2003. $Na^+$ tolerance and $Na^+$ transport in higher plants. Annals of Botany 91:503-527. https://doi.org/10.1093/aob/mcg058
  38. Thompsona, R. B., M. Gallardoa, M. D. Femandezb, L. C. Valdezc and C. Martinez-Gaitfma. 2007. Salinity effects on soil moisture measurement made with a capacitance sensor. Soil Sci. Soc. Am. J. 71 :1647-1657. https://doi.org/10.2136/sssaj2006.0309
  39. Waddington, D.V., R.N. Carrow, and R.C. Shearman. 1992. Turf-grass. Publishers Madison, Wisconsin USA.
  40. Wilhelm, S., S. Alshanunary, and Y. Qian. 2010. Establishment, growth and irrigation requirements of Kentucky bluegrass and tall fescue as influenced by two irrigation water source. Research J. of Envi. Sci. 4(5):443-451. https://doi.org/10.3923/rjes.2010.443.451
  41. Wong, Y.N.L., R.S.B. Greene, B.W Murphy, R. Dalal, S. Mann, and G. Farquhar. 2006. The effects of salinity and sodicity on soil organic carbon stocks and fluxes; an overview. J. Regolith. Australia Nat. Univ.
  42. Xinmin, Z., H. Lin, B. Xiuju, Z. Bingxiang, C. Fahe, and S. Xinzhang. 2007. The most economical irrigation amount and evapotranspiration of the turfgrass in Beijing city, China. Agric. Water Manag. J. 89:98-104. https://doi.org/10.1016/j.agwat.2006.11.006