Evaluating the Influence of Liquid Organic Polymer on Soil Aggregation and Growth of Perennial Ryegrass

유기중합물이 토양의 입단화와 페레니얼 라이그래스의 성장에 미치는 영향

  • Received : 2011.05.12
  • Accepted : 2011.05.27
  • Published : 2011.06.30

Abstract

Soil aggregate is a vigorous procedure including soil physical, chemical, and biological processes. Pore space created by binding these particles together improves retention and exchange of air and water. Various researches have reported that the benefits of organic polymers that may increase aggregate stability. The purpose of the study was to determine if a liquid organic polymer mixture has any influence on perennial ryegrass quality or soil aggregation. $Turf2Max^{(R)}$ was applied to two soils as a source of liquid organic polymer. Fine-loamy soil from local Iowa topsoil with 4.0% organic matter was screened and dried. Commercial baseball infield clay, $QuickDry^{(R)}$, was used as the second soil There were three rates of liquid organic polymer (0, 2, and 4%). there was no visual improvement in turf grass color, quality, or growth by using organic polymer. It is possible that aggregate stability increases with use of organic polymer. The aggregate stability study needs to be repeated in the greenhouse and then substantiated under field conditions for these preliminary observations.

토양입단화는 토양의 물리적 화학적 그리고 생물학적인 변화를 일으키는 활발한 과정이다. 토양입단화를 통해서 생성된 토양공극은 토양에서 공기와 물의 순환을 증가시키는 역할을 하게 된다. 유기중합물이 토양입단 안정화에 대한 긍정적인 역할은 많은 연구결과에서 보고가 된 바 있다. 본 실험의 목적은 유기중합물이 토양입단화와 페레니얼 라이그래스의 성장에 미치는 영향에 대해서 알아보기 위해서 수행되었다. 유기중합물의 세가지 농도가 적용이 되었으며 실험을 위해 두가지 토양이 사용이 되었다. 첫번째 토양으로 4.0%의 유기물이 함유된 양토가 건조된 후 사용이 되었으며 두번째 토양으로 점토가 사용이 되었다. 유기중합물 처리에 따른 페레니얼 라이그래스의 색, 품질, 성장에 미치는 영향은 나타나지 않았다. 그러나 유기중합물이 토양입단화에는 토양의 종류에 따라 영향이 있는 것으로 나타났다. 본 실험의 결과의 구체적인 실증을 위해서 필드 실험이 필요한 것으로 판단이 된다.

Keywords

References

  1. Barthes, B. and E. Roose. 2002. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47:133-149. https://doi.org/10.1016/S0341-8162(01)00180-1
  2. Beare, M.H., P.F. Hendrix, and D.C. Coleman. 1994. Waterstable aggregates and organic matter fractions in conventionaland notillage soils. Soil Sci. Soc. Am. J. 58:777-786. https://doi.org/10.2136/sssaj1994.03615995005800030020x
  3. Brady, N.C. and R.R. Weil. 2002. The nature and properties of soils. 13th ed. Pearson Education, INC., NJ.
  4. Cambardella, C.A. and Elliott, E.T. 1993. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils.
  5. Clark, E.H. II, J.A. Haverkamp, and W Chapman. 1985. Eroding soils: The off-farm impacts. The Conservation Foundation, Washington, DC. Soil Sci. Soc. Am. J. 57:1071-1076.
  6. Cruse, R.M. and W.E. Larson. 1977. Effect of soil shear strength on soil detachment due to raindrop impact. Soil Sci. Soc. Am. J. 41 :777-781. https://doi.org/10.2136/sssaj1977.03615995004100040034x
  7. Cruse, R.M. and W.E. Larson. 1977. Effect of soil shear strength on soil detachment due to raindrop impact. Soil Sci. Soc. Am. J. 41 :777-781. https://doi.org/10.2136/sssaj2000.6441474x
  8. Drury, C.F., J.A. Stone, and W.I. Findlay. 1991. Microbial biomass and soil structure associated with com, grasses, and legumes. Soil Sci. Soc. Am. J. 55:805-811. https://doi.org/10.2136/sssaj1991.03615995005500030029x
  9. Elliott, E.T. 1986. Aggregate structure and carbon, nitrogen, phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 50:627-633. https://doi.org/10.2136/sssaj1986.03615995005000030017x
  10. Jastrow, J.D., T.W Boutton, and R.M. Miller. 1996. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Sci. Soc. Am. J. 60:801-807. https://doi.org/10.2136/sssaj1996.03615995006000030017x
  11. Juma, N.D. 1993. Interrelationships between soil structure/texture, soil biota/soil organic matter and crop production. Geoderma 57:3-30. https://doi.org/10.1016/0016-7061(93)90145-B
  12. Lentz, R.D. and R.E. Sojka. 1994. Field results using polyacrylamide to manage furrow erosion and infiltration. Soil Sci. 158:274-282. https://doi.org/10.1097/00010694-199410000-00007
  13. Monreal, C.M., M. Schnitzer, H.R. Schulten, C.A. Campbell, and D.W. Anderson. 1995. Soil organic structures in macro and microaggregates of a cultivated Brown Chernozem. Soil Biol. Biochem. 27:845-853. https://doi.org/10.1016/0038-0717(94)00220-U
  14. SAS Institute. 1999. The SAS system for windows, Version 8. SAS Institute Inc., Cary, NC.
  15. Six, J., K. Paustian, E.T. Elliott, and C. Combrink. 2000. Soil structure and organic matter: I. Distribution of aggregate size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 64:681-689. https://doi.org/10.2136/sssaj2000.642681x
  16. Tisdall, J.M. and J.M. Oades. 1982. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33:141-163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x