DOI QR코드

DOI QR Code

Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis

  • Teoh, May May (Department of Chemical & Biomolecular Engineering, National University of Singapore) ;
  • Wang, Kai Yu (Department of Chemical & Biomolecular Engineering, National University of Singapore) ;
  • Bonyadi, Sina (Department of Chemical & Biomolecular Engineering, National University of Singapore) ;
  • Yang, Qian (Department of Chemical & Biomolecular Engineering, National University of Singapore) ;
  • Chung, Tai-Shung (Department of Chemical & Biomolecular Engineering, National University of Singapore)
  • 투고 : 2009.07.30
  • 심사 : 2010.07.16
  • 발행 : 2011.01.25

초록

The deficiency of clean water is a major global concern because all the living creatures rely on the drinkable water for survival. On top of this, abundant of clean water supply is also necessary for household, metropolitan inhabitants, industry, and agriculture. Among many purification processes, advances in low-energy membrane separation technology appear to be the most effective solution for water crisis because membranes have been widely recognized as one of the most direct and feasible approaches for clean water production. The aim of this article is to give an overview of (1) two new emerging membrane technologies for water reuse and desalination by forward osmosis (FO) and membrane distillation (MD), and (2) the molecular engineering and development of highly permeable hollow fiber membranes, with polyvinylidene fluoride (PVDF) and polybenzimidazole (PBI) as the main focuses for the aforementioned applications in National University of Singapore (NUS). This article presents the main results of membrane module design, separation performance, membrane characteristics, chemical modification and spinning conditions to produce novel hollow fiber membranes for FO and MD applications. As two potential solutions, MD and FO may be synergistically combined to form a hybrid system as a sustainable alternative technology for fresh water production.

키워드

참고문헌

  1. Achilli, A., Cath, T.Y., Marchanda E.A. and Childress, A.E. (2009a), "The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes", Desalination, 239, 10. https://doi.org/10.1016/j.desal.2008.02.022
  2. Achilli, A., Cath, T.Y. and Childress, A.E. (2009b), "Power generation with pressure retarded osmosis: An experimental and theoretical investigation", J. Membrane Sci., 343, 42. https://doi.org/10.1016/j.memsci.2009.07.006
  3. Al-Obaidania, S., Curcio, E., Macedoniob, F., Gianluca Di Profiob, G.D., Al-Hinaid, H. and Drioli, E. (2008), "Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation", J. Membrane Sci., 323, 85. https://doi.org/10.1016/j.memsci.2008.06.006
  4. Bhatt, P.P. (2004), Osmotic drug delivery systems for poorly soluble drugs, PharmaVentures Ltd., Oxford, UK.
  5. Bonyadi, S. and Chung, T.S. (2007), "Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membranes", J. Membrane Sci., 306, 134. https://doi.org/10.1016/j.memsci.2007.08.034
  6. Bonyadi, S. and Chung, T.S. (2009), "Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by solvent-dope solution co-extrusion approach", J. Membrane Sci., 331, 66. https://doi.org/10.1016/j.memsci.2009.01.014
  7. Bonyadi, S., Chung, T.S. and Rajagopalan, R. (2009), "A novel approach to fabricate macrovoid-free and highly permeable PVDF hollow fiber membranes for membrane distillation", AIChE J., 55, 828. https://doi.org/10.1002/aic.11688
  8. Burgoyne, A. and Vahdati, M.M. (2000), "Review. Direct contact membrane distillation", Sep. Sci. Technol., 35, 1257. https://doi.org/10.1081/SS-100100224
  9. Cath, T.Y., Gormly, S., Beaudry, E.G., Flynn, M.T., Adams, V.D. and Childress, A.E. (2005a), "Membrane contactor processes for wastewater reclamation in space Part 1. Direct osmosis concentration as pretreatment for reverse osmosis", J. Membrane Sci., 257, 85. https://doi.org/10.1016/j.memsci.2004.08.039
  10. Cath, T.Y., Adams, V.D. and Childress, A.E. (2005b), "Membrane contactor processes for wastewater reclamation in space II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater", J. Membrane Sci., 257, 111. https://doi.org/10.1016/j.memsci.2004.07.039
  11. Cath, T.Y., Childress, A.E. and Elimelech, M. (2006), "Forward osmosis: principles, applications, and recent developments, review", J. Membrane Sci., 281, 70. https://doi.org/10.1016/j.memsci.2006.05.048
  12. Charcosset, C. (2009), "A review of membrane processes and renewable energies for desalination" Desalination, 245, 214. https://doi.org/10.1016/j.desal.2008.06.020
  13. Cheng, D.Y. and Wiersma, S.J. (1982), "Composite membranes for a membrane distillation system", U.S. Patents 4,316,772.
  14. Cheng, D.Y. and Wiersma, S.J. (1983), "Composite membranes for a membrane distillation system", U.S. Patents 4,419,242.
  15. Cheng, L.H., Wu, P.C. and Chen, J.H. (2008), "Modeling and optimization of hollow fiber DCMD module for desalination", J. Membrane Sci., 318, 154. https://doi.org/10.1016/j.memsci.2008.02.065
  16. Cheng, L.H., Wu, P.C. and Chen, J.H. (2009), "Numerical simulation and optimal design of AGMD-based hollow fiber modules for desalination", Ind. Eng. Chem. Res., 48, 4948. https://doi.org/10.1021/ie800832z
  17. Choi, Y.J., Choi, J.S., Oha, H.J., Lee, S., Yang, D.R. and Kim, J.H. (2009), "Toward a combined system of forward osmosis and reverse osmosis for seawater desalination", Desalination, 247, 239. https://doi.org/10.1016/j.desal.2008.12.028
  18. Chung, T.S. (1997a), "A critical review of polybenzimidazoles: historical development and future R & D, J. macromolecular science", Review Macromol. Chem. Phys., 37, 277.
  19. Chung, T.S. (1997b), "Polybenzimidazoles, Handbook of thermoplastics", Eds. O. Olabisi and Marcel Dekker, New York, 701.
  20. Chung, T.S., Jiang, L.Y., Li, Y. and Kulprathipanj, S. (2007), "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483. https://doi.org/10.1016/j.progpolymsci.2007.01.008
  21. Cornelissen, E.R., Harmsen, D., Korte, K.F.de., Ruiken, C.J., Qin, J.J., Oo, H. and Wessels, L.P. (2008), "Membrane fouling and process performance of forward osmosis membranes on activated sludge", J. Membrane Sci., 319, 158. https://doi.org/10.1016/j.memsci.2008.03.048
  22. Curcio, E. and Drioli, E. (2005), "Membrane distillation and related operation - a review", Sep. Purif. Rev., 34, 35. https://doi.org/10.1081/SPM-200054951
  23. Curcio, E., Ji, X.S. Profio, G.D., Al-Obaidani, S., Fontananova, E. and Drioli, E. (2010), "Membrane distillation operated at high seawater concentration factors: Role of the membrane on CaCO3 scaling in presence of humic acid", J. Membrane Sci., 346, 263.
  24. Ding, Z.W., Liu, L.Y., ElBourawi M.S. and Ma, R.Y. (2005), "Analysis of a solar-powered membrane distillationsystem", Desalination, 172, 27. https://doi.org/10.1016/j.desal.2004.06.195
  25. Ding, Z.W., Liu, L.Y., Yu, J.F., Ma, R.Y. and Yang, Z.R. (2008), "Concentrating the extract of traditional Chinese medicine by direct contact membrane distillation", J. Membrane Sci., 310, 539. https://doi.org/10.1016/j.memsci.2007.11.036
  26. Drioli, E., Laganh, F., Crlscuoh, A. and Barbieri, G. (1999), "Integrated membrane operations in desalination processes", Desalination, 53, 339.
  27. Drioli, E., Wu, Y. and Calabro, V. (1987), "Membrane distillation in the treatment of aqueous solutions", J. Membrane Sci., 33, 277. https://doi.org/10.1016/S0376-7388(00)80285-9
  28. Drioli, E. and Romano, M. (2001), "Reviews: progress and new perspectives on integrated membrane operation for sustainable industrial growth", Ind. Eng. Chem. Res., 40, 1277. https://doi.org/10.1021/ie0006209
  29. El-Bourawi, M.S., Ding, Z., Ma, R. and Khayet, M. (2006), "Review: a framework for better understanding membrane distillation separation process", J. Membrane Sci., 285, 4. https://doi.org/10.1016/j.memsci.2006.08.002
  30. Escobar, I.C. and Ritchie, S.M.C. (2007), "Selected water/wastewater membrane-related presentations from the North American Membrane Society 2007 annual meeting", Environ. Progr., 27, 169.
  31. Garcia-Payo, M.C., Essalhi, M., Khayet, M., Garcia-Fernandez, L., Charfi, K. and Arafa, H. (2010), "Water desalination by membrane distillation using PVDF-HFP hollow fiber membranes", Membrane Water Treatment, 1(3).
  32. Gray, G.T., McCutcheon, J.R. and Elimelech, M., (2006), "Internal concentration polarizationin forward osmosis: role of membrane orientation", Desalination, 197, 1. https://doi.org/10.1016/j.desal.2006.02.003
  33. Gryta, M. (2007), "Influence of polypropylene membrane surface porosity on the performance of membrane distillation process", J. Membrane Sci., 287, 67. https://doi.org/10.1016/j.memsci.2006.10.011
  34. Gryta, M. (2010), "Application of membrane distillation process for tap water purification", Membrane Water Treatment, 1(1), 1-12. https://doi.org/10.12989/mwt.2010.1.1.001
  35. Gryta M. and Barancewicz, M. (2010), "Influence of morphology of PVDF capillary membranes on the performance of direct contact membrane distillation", J. Membrane Sci., 358, 158. https://doi.org/10.1016/j.memsci.2010.04.044
  36. Gryta, M., Tomaszewska, M., Grzechulska, J. and Morawski, A.W. (2001), "Membrane distillation of NaCl solution containing natural organic matter", J. Membrane Sci., 181, 279. https://doi.org/10.1016/S0376-7388(00)00582-2
  37. Hancock, N.T. and Cath, T.Y. (2009), "Solute coupled diffusion in osmotically driven membrane processes", Environ. Sci. Tech., 43, 6769. https://doi.org/10.1021/es901132x
  38. Hanemaaijer, J.H., Medevoort, J.V., Jansen, AE. Dotremont, C., Sonsbeek, E.V., Yuan T. and Ryck, L.D. (2006), "Memstill membrane distillation - a future desalination technology", Desalination, 199, 175. https://doi.org/10.1016/j.desal.2006.03.163
  39. Holloway, R.W., Childress, A.E., Denett, K.E. and Cath, T.Y. (2007), "Forward osmosis for concentration of anaerobic digester", Water Res., 41, 4005. https://doi.org/10.1016/j.watres.2007.05.054
  40. Hou, D., Wang, J., Qu, D., Luan, Z. and Ren, X. (2009), "Fabrication and characterization of hydrophobic PVDF hollow fiber membranes for desalination through direct contact membrane distillation", Sep. Purif. Technol., 69, 78. https://doi.org/10.1016/j.seppur.2009.06.026
  41. Jiang L.Y., Wang, Y., Chung, T.S., Qiao, X.Y. and Lai, J.Y. (2009), "Polyimides for pervaporation membranes and biofuels separation", Prog. Polym. Sci., 34, 1135. https://doi.org/10.1016/j.progpolymsci.2009.06.001
  42. Jiao, B., Cassano, A. and Drioli, E. (2004), "Recent advances on membrane processes for the concentration of fruit juices: a review", J. Food Eng., 63, 303. https://doi.org/10.1016/j.jfoodeng.2003.08.003
  43. Jellinek, H.H.G. and Masuda, H. (1981), "Osmo-power: theory and performance of an osmo-power pilot plant", Ocean Eng., 8, 103. https://doi.org/10.1016/0029-8018(81)90022-6
  44. Karakulski, K., Gryta, M. and Morawski, A.W. (2009), "Membrane processes used for separation of effluents from wire productions", Chem. Papers, 63, 205. https://doi.org/10.2478/s11696-009-0006-x
  45. Kelter, P., Carr, J. and Scott, A. (2003), Chemistry: A world of choices McGraw-Hill, New York.
  46. Kessler, J.O. and Moody, C.D. (1976), "Drinking water from sea water by forward osmosis", Desalination, 18, 297. https://doi.org/10.1016/S0011-9164(00)84119-3
  47. Khayet, M., Mengual, J.I. and Matsuura, T. (2005), "Porous hydrophobic/hydrophilic composite membranes application in desalination using direct contact membrane distillation", J. Membrane Sci., 252, 101. https://doi.org/10.1016/j.memsci.2004.11.022
  48. Kim J.W., Chang D.S. and Choi Y.Y. (2009), "Separation of oxygen isotopic water by using a pressure-driven air gap membrane distillation", Ind. Eng. Chem. Res., 48, 5438.
  49. Kozak, A., Bekassy-Molnar, E. and Vatai, G. (2009), "Production of black-currant juice concentrate by using membrane distillation", Desalination, 241, 309. https://doi.org/10.1016/j.desal.2008.02.033
  50. Lafreniere, L., Talbot, F.D.F., Matsuura, T. and Sourirajan, S. (1987), "Effect of PVP additive on the performance of PES ultrafiltration membrane", Ind. Eng. Chem. Res., 26, 2385. https://doi.org/10.1021/ie00071a035
  51. Lawson, K.W. and Lloyd, D.R. (1996), "Membrane distillation II. Direct contact MD." J. Membrane Sci., 120, 123. https://doi.org/10.1016/0376-7388(96)00141-X
  52. Lawson, K.W. and Lloyd, D.R. (1997), "Review membrane distillation", J. Membrane Sci., 124, 1. https://doi.org/10.1016/S0376-7388(96)00236-0
  53. Lee, K.L., Baker, R.W. and Lonsdale, H.K. (1981), "Membranes for power generation by pressure-retarded osmosis", J. Membrane Sci., 8, 141. https://doi.org/10.1016/S0376-7388(00)82088-8
  54. Loeb, S. (2001), "One hundred and thirty benign and renewable megawatts from Great Salt Lake? The possibilities of hydroelectric power by pressure retarded osmosis", Desalination, 141, 85. https://doi.org/10.1016/S0011-9164(01)00392-7
  55. Li, B.A. and Sirkar, K.K. (2004), "Novel membrane and device for direct contact, membrane distillation-based desalination process", Ind. Eng. Chem. Res., 43, 5300. https://doi.org/10.1021/ie030871s
  56. Kong, Y., Lin, X., Wu, Y., Cheng, J. and Xu, J. (1992), "Plasma polymerization of octafluorocyclobutane and hydrophobic microporous composite membranes for membrane distillation", J. Appl. Polym. Sci., 46, 191.
  57. Martinez, L. and Florido-Díaz, F.J. (2001), "Theoretical and experimental studies on desalination using membrane distillation", Desalination, 139, 373. https://doi.org/10.1016/S0011-9164(01)00335-6
  58. Matsuura, T. (1994), Synthetic membranes and membrane separation processes. CRC Press, Boca Raton., 62
  59. McCutcheon, J.R. and Elimelech, M. (2006), "Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis", J. Membrane Sci., 284, 237. https://doi.org/10.1016/j.memsci.2006.07.049
  60. McCutcheon, J.R. and Elimelech, M. (2008), "Influence of membrane support layer hydrophobicity on waterflux in osmotically driven membrane processes", J. Membrane Sci., 318, 458. https://doi.org/10.1016/j.memsci.2008.03.021
  61. McCutcheon, J.R., McGinnis, R.L. and Elimelech, M. (2005), "A novel ammonia-carbon dioxide forward (direct) osmosis desalination process", Desalination, 174, 1. https://doi.org/10.1016/j.desal.2004.11.002
  62. Merkel, G.A. and Murtagh, M.J. (1993), "Fabrication of low thermal expansion, high porosity cordierite body", U.S. Patent 5,258,150.
  63. Mehta, G.D. and Loeb, S. (1978), "Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis", J. Membrane Sci., 4, 261. https://doi.org/10.1016/S0376-7388(00)83301-3
  64. Mi. B. and Elimelech, M. (2010a), "Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms", Environ. Sci. Technol., 44, 2022. https://doi.org/10.1021/es903623r
  65. Mi. B. and Elimelech, M. (2010b), "Organic fouling of forward osmosis membranes: Fouling reversibility andcleaning without chemical reagents", J. Membrane Sci., 348, 337.
  66. Peng, W., Escobar, I.C. and White D.B. (2004), "Effects of water chemistries and properties of membrane on the performance and fouling-a model development study", J. Membrane Sci., 238, 33. https://doi.org/10.1016/j.memsci.2004.02.035
  67. Petrotos, K.B. and Lazarides, H.N. (2001), "Osmotic concentration of liquid foods", J. Food Eng., 49, 201. https://doi.org/10.1016/S0260-8774(00)00222-3
  68. Phattaranawik, J., Jiraratananon, R. and Fane, A.G. (2003), "Effect of pore size distribution and air flux on mass transport in direct contact membrane, distillation", J. Membrane Sci., 215, 75. https://doi.org/10.1016/S0376-7388(02)00603-8
  69. Sakai, K., Koyano, T. Muroi, T. and Tamura, M. (1988), "Effects of temperature and concentration polarization on water vapor permeability for blood in membrane distillation", Chem. Eng. J., 38, 33. https://doi.org/10.1016/0300-9467(88)80051-0
  70. Salter, R.J. (2005), "Forward osmosis", Water Condit. Purif., 48, 36.
  71. Sepala, A. and Lampinen, M.J. (1999), "Thermodynamic optimizing of pressure retarded osmosis power generation systems", J. Membrane Sci., 161, 115. https://doi.org/10.1016/S0376-7388(99)00108-8
  72. Service, R.F. (2006), "Desalination freshens up", Science, 313, 1088. https://doi.org/10.1126/science.313.5790.1088
  73. Schneider, K., Holz, W. and Wollbeck, R. (1988), "Membranes and modules for transmembrane distillation", J. Membrane Sci., 39, 25. https://doi.org/10.1016/S0376-7388(00)80992-8
  74. Semiat, R. (2008), "Energy issues in desalination processes", Environ. Sci. Technol., 42, 8193, https://doi.org/10.1021/es801330u
  75. Singh, S., Khulbe, K., Matsuura, T. and Ramamurthy, P. (1998), "Membrane characterization by solute transport and atomic force microscopy", J. Membrane Sci., 142, 111. https://doi.org/10.1016/S0376-7388(97)00329-3
  76. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marias, B.J. and Mayes, A.M. (2008), "Science and technology for water purification in the coming decades", Nature, 452, 301. https://doi.org/10.1038/nature06599
  77. Shao. L., Samseth. J. and Hagg. M. (2009), "Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separation", J. Membrane Sci., 326, 285. https://doi.org/10.1016/j.memsci.2008.09.053
  78. Shao. L., Samseth. J. and Hagg. M. (2009), "Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separation", J. Membrane Sci., 326, 285. https://doi.org/10.1016/j.memsci.2008.09.053
  79. Song, L., Ma, Z., Liao, X., Kosaraju, P.B., Irish, J.R. and Sirkar, K.K. (2008), "Pilot plant studies of novel membranes and devices for direct contact membrane distillation-based desalination", J. Membrane Sci., 323, 257. https://doi.org/10.1016/j.memsci.2008.05.079
  80. Sternling, C.V. and Scriven, L.E. (1959), "Interfacial turbulence: hydrodynamic instability and the Marangoni effect", AIChE J., 5, 514. https://doi.org/10.1002/aic.690050421
  81. Strathmann, H. (2001), "Membrane separation processes: current relevance and future opportunities", AIChE J., 47, 1077. https://doi.org/10.1002/aic.690470514
  82. Suk, D.E., Chowdhury, G., Matsuura, T., Narbaitz, R.M., Santerre, P., Pleizier, G. and Deslandes, Y. (2002), "Study on the kinetics of surface migration of surface modifying macromolecules in membrane preparation", Macromolecules, 35, 3017. https://doi.org/10.1021/ma011205a
  83. Suk, D.E., Matsuura, T., Park, H.B. and Lee, Y.M. (2006), "Synthesis of a new type of surface modifying macromolecules (nSMM) and characterization and testing of nSMM blended membranes for membrane distillation", J. Membrane Sci., 277, 177. https://doi.org/10.1016/j.memsci.2005.10.027
  84. Teoh, M.M., Bonyadi, S. and Chung, T.S. (2008), "Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process", J. Membrane Sci., 311, 371. https://doi.org/10.1016/j.memsci.2007.12.054
  85. Teoh, M.M. and Chung, T.S. (2009), "Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes", Sep. Purif. Technol., 66, 229. https://doi.org/10.1016/j.seppur.2009.01.005
  86. Tomaszewska, M. (1993), "Concentration of the extraction of fluid from sulfuric acid treatment of phosphogypsum by membrane distillation", J. Membrane Sci., 78, 277. https://doi.org/10.1016/0376-7388(93)80007-K
  87. Tsai, H.A., Huang, D.H., Lee, K.R., Wang, Y.C., Li, C.L., Huang, J. and Lai, J.Y. (2000), "Nonsolvent induced gelation and its effect on membrane morphology. Effect of surfactant addition on the morphology and pervaporation performance of asymmetric polysulfone membranes", J. Membrane Sci., 176, 97. https://doi.org/10.1016/S0376-7388(00)00435-X
  88. Wang, K.Y., Chung, T.S. and Gryta, M. (2008), "Modified single layer PVDF hollow fiber membrane for desalination through membrane distillation process", Chem. Eng. Sci., 63, 2587. https://doi.org/10.1016/j.ces.2008.02.020
  89. Wang, K.Y., Chung, T.S. and Qin, J.J. (2007), "Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process", J. Membrane Sci., 300, 6. https://doi.org/10.1016/j.memsci.2007.05.035
  90. Wang, K.Y., Foo, S.W. and Chung, T.S. (2009a), "Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation", Ind. Eng. Chem. Res., 48, 4474. https://doi.org/10.1021/ie8009704
  91. Wang, K.Y., Yang, Q. and Chung, T.S. (2009b), "Chemically modified polybenzimidazole nanofiltration membranes in forward osmosis for water reuse and seawater desalination", PCT International Application No.: PCT/US09/68098.
  92. Wang, K.Y., Yang, Q. and Chung, T.S. (2009c), "Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall", Chem. Eng. Sci., 64, 1577. https://doi.org/10.1016/j.ces.2008.12.032
  93. Wu, Y., Kong, Y., Lin, X., Liu, W. and Xu, J. (1992), "Surface-modified hydrophilic membranes in membrane distillation", J. Membrane Sci., 72, 89.
  94. Xiao, Y.C., Wang, K.Y., Chung, T.S. and Tan, J. (2006), "Evolution of nano-particle distribution during the fabrication of mixed matrix TiO2-polyimide hollow fiber membranes", Chem. Eng. Sci., 61, 6228. https://doi.org/10.1016/j.ces.2006.05.040
  95. Xu, Y., Zhu, B.K. and Xu, Y.Y. (2006), "Pilot test of vacuum membrane distillation for seawater desalination on a ship", Desalination, 189, 165. https://doi.org/10.1016/j.desal.2005.06.024
  96. Yan, L., Wang, K. and Ye, L. (2003), "Super hydrophobic property of PVDF/CaCO3 nanocomposite coatings", J. Mater. Sci. Lett., 22, 1713.
  97. Yang, Q., Wang, K.Y. and Chung, T.S. (2009a), "Dual-layer hollow fibers with enhanced flux as novel forward osmosis membranes for water reclamation", Environ. Sci. Technol., 43, 2800. https://doi.org/10.1021/es803360t
  98. Yang, Q., Wang, K.Y. and Chung, T.S. (2009b), "A novel dual-layer forward osmosis membrane for protein enrichment and concentration", Sep. Purif. Technol., 69, 269. https://doi.org/10.1016/j.seppur.2009.08.002
  99. Yang, Q., Wang, K.Y. and Chung, T.S. (2010), "Dual-layer hollow fibers with enhanced flux as novel forward osmosis membranes for water reuses and protein enrichment", PCT Patent Application No: PCT/US09/60791.
  100. Zhen, H., Jang, S.M.J., Teo, W.K. and Li, K. (2006), "Modified silicone-PVDF composite hollow fiber membrane preparation and its application in VOC separation", J. Appl. Polym. Sci., 99, 2497. https://doi.org/10.1002/app.22860

피인용 문헌

  1. Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future vol.37, pp.10, 2012, https://doi.org/10.1016/j.progpolymsci.2012.01.001
  2. A novel method of surface modification to polysulfone ultrafiltration membrane by preadsorption of citric acid or sodium bisulfite vol.3, pp.1, 2011, https://doi.org/10.12989/mwt.2012.3.1.035
  3. Evaluation of raw wastewater characteristic and effluent quality in Kashan Wastewater Treatment Plant vol.9, pp.4, 2011, https://doi.org/10.12989/mwt.2018.9.4.273
  4. Effects of temperature, pH, feed, and fertilizer draw solution concentrations on the performance of forward osmosis process for textile wastewater treatment vol.93, pp.10, 2021, https://doi.org/10.1002/wer.1607
  5. Comprehensive insights into performance of water gap and air gap membrane distillation modules using hollow fiber membranes vol.525, pp.None, 2022, https://doi.org/10.1016/j.desal.2021.115497