DOI QR코드

DOI QR Code

A Study of Standarzied Uptake Value Change on the Type of Mateiral

물질의 종류에 따른 표준섭취계수의 변화에 관한 연구

  • Kim, Ki-Jin (Dept of Nuclear Medince, Konyang University Hospital) ;
  • Kim, Chong-Yeal (Dept of Radiation Science & Technology, Chon Buk National University) ;
  • Bae, Seok-Hwan (Dept of Radiological Science, Konyang University)
  • 김기진 (건양대학교병원 핵의학과) ;
  • 김종일 (전북대학교 방사선과학기술학과) ;
  • 배석환 (건양대학교 방사선학과)
  • Received : 2011.06.16
  • Accepted : 2011.08.11
  • Published : 2011.08.31

Abstract

In Positron Emission Tomography Computed Tomography, Standardized Uptake Value(SUV)is most generally used to discern tumors. However, SUV may be influenced other factors. In this study, experiment was conducted distrotion in image and change in SUV according to substance with GEMINI TF PET/CT of Philips.. SUV for materials resulted in 1.8 for stainless, 1.4 for stent, 2.4 for iodine contrast medium, 2.6 for Barium Sulfate, 1.6 for Gypsum, and 1.4 for paraffin respectively. The distortion of image was remarkable for the iodine contrast medium and Barium Sulfate. For the barium sulfate, the higher the density, the larger the distrotion of the images. As a result of test, it appeared that the metallic substance whose atomic number is low and contrast medium whose concentration is low didn't affect the distortion in image and the change in SUV. However, it tis necessary to minimize distortion in image and change in SUV, by removing the metallic substance and checking if there are contrast mdeium or before examination.

양전자방출단층촬영에서 표준섭취계수는 종양의 진단에 사용이 되는 지표이다. 표준섭취계수는 여러 인자에 의해 변화한다. 본 연구에서는 Philips사의 GEMINI TF PET/CT를 이용하여 물질에 따른 영상의 왜곡 및 표준섭취계수의 변화에 대하여 실험하였다. 물질별 표준섭취계수의 변화는 스테인레스보정물은 1.8, 스텐트는 1.4, 요오드성조영제는 2.4, 황산바륨은 2.6, 석고는 1.6, 파라핀은 1.4 이였다. 황산바륨 일수록 농도가 높을수록 영상의 왜곡은 크게 나타났다. 실험의 결과 원자번호가 낮은 금속성 물질이나 농도가 낮은 조영제의 경우 큰 영향은 없었다. 그러나 검사전 반드시 금속성 물질을 제거하거나 조영제의 유무를 확인하여 영상의 왜곡 및 표준섭취계수의 변화를 최소화 해야할 것이다.

Keywords

References

  1. Beyer T, Townsend DW, Brun T, et al., "Combined PET/CT Scanner for Clinical Oncology", J Nucl Med, 41, pp. 1369-1379, 1997.
  2. Rohren EM, Turkington TG, coleman RE., "Clinical Applications of PET in Oncology", Radiology, 231, pp. 305-332, 2004. https://doi.org/10.1148/radiol.2312021185
  3. Thie J., "Understanding the Standardized Uptake Value, Its Methods, and Implication of usage", J Nucl Med, 4, pp. 1431-1434, 2004.
  4. Chang Soon Koh., Clinical Application of Positron Emission Tomography, Nucl Med, Vol. 3, pp. 56-57, 1997.
  5. Antoch G, Freudenberg Ls, Stattus J, Jentzen W, Meuller, et al., "Whole body Positron Emission Tomography-CT:Optimized CT Using Oral and IV Contrast Materials", Am J Roentgenol, 179, pp. 155-1560, 2002.
  6. Kinahan PE, Hasegawa BH, Heyer T., "X-Ray-Based Attenuation Correction for Positron Emission Tomography/Computed Tomography Scanner", Seminar in Nucl Med, No 3, pp. 166-179, 2003.
  7. Beyer T, Antoch G, Meller S, et al., "Acqusition protocol considerations for combined PET/CT imaging", J Nucl Med, 45, pp. 25S-35S, 2004.
  8. Kinahan PE, Townsed DW, Byer T, Sashin D., "Atteunation correction for a combined 3D PET/CT scanner", Med Phys, 25, pp. 2046-2053, 1998. https://doi.org/10.1118/1.598392
  9. Hubbel JH., Photon Cross Section, Attenuation Coefficients, and Energy Absorption Coefficients From 10KeV to 100GeV, Washington D.C: National Bureau of Standards, NSRDS-NBS 29, 1969.
  10. Goerres GW, Hany TF, Kamel E, et al,, "Head and neck imaging with PET and PET/CT : artefacts from dental metallic implants", Eur J Nucl Med, 29, pp. 369-370, 2002.
  11. Mawlawi O, Erasmus JJ, Menden RF, Pan T, Knight AE, Macapinlac HA, et al., "Quantifying the effect of IV contrast media on intergrated PET/CT: Clinical evaluation", Am J Roentgenol, 186, pp. 308-319, 2006. https://doi.org/10.2214/AJR.04.1740
  12. Young Jin Jeong, Do Young Kang., "The Effect of intravenous Contrast on SUV Value in (18)F-FDG PET/CT using Diagnostic High Energy CT", J Nucl Med Mol Imaging, Vol. 40, No. 3, pp. 169-176, 2006.