DOI QR코드

DOI QR Code

Characterization of Embryo-specific Autophagy during Preimplantation

착상전 난자 자식작용의 특성규명

  • 이재달 (혜전대학교 애완동물관리과)
  • Received : 2011.06.14
  • Accepted : 2011.08.11
  • Published : 2011.08.31

Abstract

Autophagy is an evolutionarily conserved lysosomal pathway for degrading cytoplasmic proteins, macromolecules, and organelles in addition to recycling protein and ATP synthesis. Although autophagy is very important during embryogenesis, the mechanism underlying the dynamic development during this process remains largely unknown. In order to obtain insights into autophagy in early embryo development, we analyzed gene expression levels of autophagy-related genes (ATGs) in mouse embryos developing in vitro. Using real time RT-PCR technique, ATGs including Atg2a, Atg3, Atg4b, Atg5, Atg6, Atg7, Atg9a, and Wipi3, as maternal transcripts, were only up-regulated in 1-cell embryo stage before zygotic genomic activation (ZGA), and then expression decreased from 2-cell to blastocyst embryo stage. ATGs including Dram and Atg9b were expressed abundantly in 1-cell embryo state and in blastocyst embryo stage, athough Atg8 and Ulk1 were constantly expressed during preimplantation stage. However, Atg4d were only up-expressed from 4-cell to blastocyst stage. These results suggest that autophagy is related in mouse embryo, which possibly gives an important role for early development.

자식작용은 난자 세포질의 단백질 고분자 물질과 세포 소기관 분해를 위해서 세포질 리소좀 통로에 유전적으로 작용하고 있으며 ATP합성과 단백질 재활용에 관여하고 있다. 이러한 자식작용은 난자 발달 과정에서 매우 중요하지만 세포질 내 자식작용의 동적 발달 과정의 근원적인 기전은 잘 알려지지 않고 있다. 따라서 본 연구에서는 초기 난자 발달 과정의 자식작용을 이해하기 위해서 쥐 난자 체외 성숙 과정에서 자식작용과 관련된 유전자들의 유전적 발현 수준을 분석하였다. Real Time RT-PCR 기법을 이용하여 유전자 Atg2a, Atg3, Atg4b, Atg5, Atg6, Atg7, Atg9a, 그리고 Wipi3 같은 모계에서 유전된 ATGs 군들의 유전자들은 수정난 유전체 활성화(ZGA) 이전 단계인 1세포기에서 높게 발현되었고, 그 후 이들 유전자들의 발현은 배반포 단계와 2세포기 4세포기 단계에서는 감소함을 알 수 있었다. Dram과 Atg9b 유전자들은 배반포와 1세포기 단계에서 발현됨으로서 모계 유전자이면서 ZGA에 의해서 발현되는 유전자임을 알 수 있었다. 한편 UIKI의 유전자 발현은 착상 전 단계에서 일정하게 나타남을 알 수 있었다. 하지만 Atg4d 유전자의 경우 4세포기에서부터 배 반포 단계까지 높게 나타남을 알 수 있었다. 이러한 결과로부터 생쥐 난자 발달 과정에서 자식작용과 관련된 유전자들은 초기 난자 발달과정에서 중요한 역할 과정임을 알 수 있었다.

Keywords

References

  1. Shintani, T. and D, J. Klionsky. utophagy in health and disease: a double-edged sword, Science, 306:990-995, 2004. https://doi.org/10.1126/science.1099993
  2. Klionsky, D.J, R. Cueva, and D.S. Yaver. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J. Cell Biol,119:287-299, 1992. https://doi.org/10.1083/jcb.119.2.287
  3. Dunn, W.A. Jr, J.M. Cregg, J.A.K.W. Kiel, I.J. van der Klei, M. Oku, Y. Sakai, A.A. Sibirny, O.V. Stasyk, and M. Veenhuis. Pexophagy. the selective autophagy of peroxisomes. Autophagy. 1:75-83. 2005. https://doi.org/10.4161/auto.1.2.1737
  4. Suzuki, K., T. Kirisako, Y. Kamada, N. Mizushima, T. Noda, and Y. Ohsumi.. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J, 20:5971-5981, 2001. https://doi.org/10.1093/emboj/20.21.5971
  5. Shintani, T. W-P Huang. P.E. Stromhaug. and D.J. Klionsky. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell, 3:825-837, 2002. https://doi.org/10.1016/S1534-5807(02)00373-8
  6. Scott, S.V. J. Guan. M.U. Hutchins, J. Kim, and D.J. Klionsky. Cvt19 is a receptor for the cytoplasm-tovacuole targeting pathway, Mol. Cell, 7:1131-1141, 2001. https://doi.org/10.1016/S1097-2765(01)00263-5
  7. Kim J. Y. Kamada. P.E. Stromhaug. J. Guan. A. Hefner-Gravink, M. Baba. S.V. Scott. Y. Ohsumi, W.A. Dunn. and D J. Klionsky. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol, 153:381-396. 2001. https://doi.org/10.1083/jcb.153.2.381
  8. He, C. H. Song, T. Yorimitsu I. Monastyrska. W - L. Yen E. Legakis . and D J Klionsky . 6. Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast . J. Cell Biol, 175:925-935, 2006. https://doi.org/10.1083/jcb.200606084
  9. Suzuki, K, Ohsumi, Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett, 581:2156-2161, 2007. https://doi.org/10.1016/j.febslet.2007.01.096
  10. Kabeya, Y, Kawamata, T, Suzuki, K, and Ohsumi, Y. Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem, Biophys, Res. Commun 356, 405-410, 2007. https://doi.org/10.1016/j.bbrc.2007.02.150
  11. Nakatogawa, H. Ichimura, Y. Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion . Cell 130:165-178 , 2007. https://doi.org/10.1016/j.cell.2007.05.021
  12. Liang, X.H. Kleeman, L K. Jiang, H.H. Gordon, G. Goldman, J. E. Berry, G. Herman, B. Levine, B. Protection against fatal Sindbis virus encephalitis by Becli a novel Bcl-2-interacting protein. J. Virol. 72:8586 -8596, 1998.
  13. Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Bio. 147:435-46, 1999. https://doi.org/10.1083/jcb.147.2.435
  14. Cui X-S. Shin M R . Lee KA. Kim NH. Identification of differentially expressed genes in murine embryos at the blastocyst stage using annealing control primer system. Mol Reprod Dev, 70:278-287, 2005. https://doi.org/10.1002/mrd.20210