DOI QR코드

DOI QR Code

Mapping of Quantitative Trait Loci Affecting Growth Traits in a Japanese Native Chicken Cross

  • Rikimaru, K. (Livestock Experiment Station, Akita Prefectural Agriculture, Forestry and Fisheries Research Center) ;
  • Sasaki, O. (Animal Breeding and Reproduction Research Team, National Institute of Livestock and Grassland Science) ;
  • Koizumi, N. (National Institute for Rural Engineering) ;
  • Komatsu, M. (Livestock Experiment Station, Akita Prefectural Agriculture, Forestry and Fisheries Research Center) ;
  • Suzuki, K. (Graduate School of Agricultural Science, Tohoku University) ;
  • Takahashi, Hideaki (Animal Breeding and Reproduction Research Team, National Institute of Livestock and Grassland Science)
  • 투고 : 2011.01.05
  • 심사 : 2011.04.13
  • 발행 : 2011.10.01

초록

The Hinai-dori is a breed of chicken native to Akita Prefecture, Japan. An $F_2$ resource population produced by crossing low- and high-growth lines of the Hinai-dori breed was analyzed to detect quantitative trait loci (QTL) for growth traits. Highly significant QTLs for body weight at 10 and 14 weeks of age and average daily gain between 4 and 10 weeks and between 10 and 14 weeks of age were accordingly mapped in a common region between ADL0198 and ABR0287 on chromosome 1 and between MCW0240 and ABR0622 on chromosome 4, respectively. A significant QTL for body weight at 4 weeks of age and a significant QTL for average daily gain between 0 and 4 weeks of age were mapped for the first time to the same region flanking ABR0204 and ABR0284 on chromosome 1. These QTLs are good candidates for application in the development of marker-assisted selection strategies for increasing growth efficiencies in the Hinai-dori breed and native breeds of chickens in Asia.

키워드

참고문헌

  1. Ankra-Badu, G. A., E. Le Bihan-Duval, S. Mignon-Grasteau, F. Pitel, C. Beaumont, M. J. Duclos, J. Simon, W. Carre, T. E. Porter, A. Vignal, L. A. Cogburn and S. E. Aggrey. 2010. Mapping QTL for growth and shank traits in chickens divergently selected for high or low body weight. Anim. Genet. 41:400-405.
  2. Ensembl Genome Browser. 2004. European Bioinformatics Institute, UK. http://uswest.ensembl.org/index.html Accessed Dec. 2010.
  3. Hernandez-Sanchez, J., J.-A. Grunchec and S. Knott. 2009. A web application to perform linkage disequilibrium and linkage analyses on a computational grid. Bioinformatics 25:1377-1383. https://doi.org/10.1093/bioinformatics/btp171
  4. Jacobsson, L., H.-B. Park, P. Wahlberg, R. Frendriksson, M. Perez-Enciso, P. B. Siegel and L. Andersson. 2005. Many QTLs with minor additive effects are associated with a large difference in growth between two selection lines in chickens. Genet. Res. 86:115-125. https://doi.org/10.1017/S0016672305007767
  5. Jennen, D. G. J., A. L. J. Vereijken, H. Bovenhuis, R. P. M. A. Crooijmans, A. Veenendaal, J. J. van der Poel and M. A. M. Groenen. 2004. Detection and localization of quantitative trait loci affecting fatness in broilers. Poult. Sci. 83:295-301. https://doi.org/10.1093/ps/83.3.295
  6. Kerje, S., O. Carlborg, L. Jacobsson, K. Schutz, C. Hartmann, P. Jensen and L. Andersson. 2003. The twofold difference in adult size between the red Junglefowl and White Leghorn chickens is largely explained by a limited number of QTLs. Anim. Genet. 34:264-274. https://doi.org/10.1046/j.1365-2052.2003.01000.x
  7. Manly, K. F., R. H. Cudmore, Jr. and J. M. Meer. 2001. Map Manager QTX, cross-platform software for genetic mapping. Mammal. Genome 12:930-932. https://doi.org/10.1007/s00335-001-1016-3
  8. Sasaki, O., S. Odawara, H. Takahashi, K. Niraasawa, Y. Oyamada, R. Yamamoto, K. Ishii, Y. Nagamine, H. Takeda, E. Kobayashi and T. Furukawa. 2004. Genetic mapping of quantitative trait loci affecting body weight and egg character and egg production in $F_2$ intercross chickens. Anim. Genet. 35:188-194. https://doi.org/10.1111/j.1365-2052.2004.01133.x
  9. Seaton, G., C. S. Haley, S. A. Knott, M. Kearsey and P. M. Visscher. 2002. QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18:339-340. https://doi.org/10.1093/bioinformatics/18.2.339
  10. Sewalem, A., D. M. Morrice, A. Law, D. Windsor, C. S. Haley, C. O. N. Ikeobi, D. W. Burt and P. M. Hocking. 2002. Mapping of quantitative trait loci for body weight at three, six and nine weeks of age in a broiler layer cross. Poult. Sci. 81:1775-1781. https://doi.org/10.1093/ps/81.12.1775
  11. Schreiweis, M. A., P. Y. Hester and D. E. Moody. 2005. Identification of quantitative trait loci associated with bone traits and body weight in an $F_2$ resource population of chickens. Genet. Sel. Evol. 37:677-698. https://doi.org/10.1186/1297-9686-37-7-677
  12. Takahashi, H., M. Tsudzuki, O. Sasaki, J. Niikura, M. Inoue-Maruyama and M. Minezawa. 2005. A chicken linkage map based on microsatellite markers genotyped on a Japanese Large Game and White Leghorn cross. Anim. Genet. 36:463-467. https://doi.org/10.1111/j.1365-2052.2005.01391.x
  13. Takahashi, H., D. Yang, O. Sasaki, T. Furukawa and K. Nirasawa. 2009. Mapping of quantitative trait loci affecting eggshell quality on chromosome 9 in an $F_2$ intercross between two chicken lines divergently selected for eggshell strength. Anim. Genet. 40:779-782. https://doi.org/10.1111/j.1365-2052.2009.01914.x
  14. Takahashi, H., O.Sasaki, K. Nirasawa and T. Furukawa. 2010. Association between ovocalyxin-32 gene haplotypes and eggshell quality traits in an $F_2$ intercross between two chicken lines divergently selected for eggshell strength. Anim. Genet. 41:541-544. https://doi.org/10.1111/j.1365-2052.2010.02034.x
  15. Tatsuda, K. and K. Fujinaka. 2001. Genetic mapping of the QTL affecting body weight in chickens using a $F_2$ family. Br. Poult. Sci. 42:333-337. https://doi.org/10.1080/00071660120055296
  16. UCSC Genome Browser Home. 2004. University of California, Santa Cruz, USA. http://genome.ucsc.edu/ Accessed Dec. 2010.
  17. Uemoto, Y., S. Sato, S. Odawara, H. Nokata, Y. Oyamada, Y. Taguchi, S. Yanai, O. Sasaki, H. Takahashi, K. Nirasawa and E. Kobayashi. 2009. Genetic mapping of quantitative trait loci affecting growth and carcass traits in $F_2$ intercross chickens. Poult. Sci. 88:477-482. https://doi.org/10.3382/ps.2008-00296
  18. Wahlberg, P., O. Carlborg, M. Foglio, X. Tordoir, A.-C. Syvanen, M. Lathrop, I. G. Gut, P. B. Siegel and L. Andersson. 2009. Genetic analysis of an $F_2$ intercross between two chicken lines divergently selected for body-weight. BMC Genomics 10:248. https://doi.org/10.1186/1471-2164-10-248
  19. Yang, D., O. Sasaki, M. Minezawa, K. Nirasawa and H. Takahashi. 2010. Mapping of quantitative trait loci affecting eggshell quality in an $F_2$ population derived from strong and weak eggshell lines of the White Leghorn chicken breed. Agric. Sci. Chn. 9:593-597. https://doi.org/10.1016/S1671-2927(09)60133-4

피인용 문헌

  1. Effect of a Single-Nucleotide Polymorphism in the Cholecystokinin Type A Receptor Gene on Growth Traits in the Hinai-dori Chicken Breed vol.50, pp.3, 2013, https://doi.org/10.2141/jpsa.0120130
  2. Production of Pure Hinai-dori with Normal Reproductive Capability from Transferred Primordial Germ Cells vol.51, pp.3, 2014, https://doi.org/10.2141/jpsa.0130102
  3. Characteristics of Egg-related Traits in the Onagadori (Japanese Extremely Long Tail) Breed of Chickens vol.52, pp.2, 2015, https://doi.org/10.2141/jpsa.0140109
  4. Association between cholecystokinin type A receptor haplotypes and growth traits in Japanese Hinai-dori crossbred chickens vol.39, pp.4, 2011, https://doi.org/10.1007/s11033-011-1237-9
  5. Genome-Wide Association Study of Growth Performance and Immune Response to Newcastle Disease Virus of Indigenous Chicken in Rwanda vol.12, pp.None, 2021, https://doi.org/10.3389/fgene.2021.723980