DOI QR코드

DOI QR Code

Effect of Fermented Brown Seaweed Waste (FBSW) on in vitro Rumen Microbial Fermentation

발효 미역부산물이 반추위 발효특성에 미치는 영향

  • Hong, Zhong-Shan (Department of Animal science & Technology, Tianjin Agricultural University) ;
  • Lee, Hong-Gu (Department of Animal Science, Pusan National University) ;
  • Lee, Zhe-Hu (Department of Agricultural Biotechnology, Seoul National University) ;
  • Jin, Yong-Cheng (Department of Animal Science, Pusan National University) ;
  • Lee, Sang-Bum (Department of Animal Science, Pusan National University) ;
  • Kang, Han-Suck (Department of Animal Science, Pusan National University) ;
  • Choi, Yun-Jaie (Department of Agricultural Biotechnology, Seoul National University)
  • 홍중산 (천진농학원 동물자원과학과) ;
  • 이홍구 (부산대학교 동물생명자원과학과) ;
  • 이철호 (서울대학교 농생명공학부) ;
  • 김영성 (부산대학교 동물생명자원과학과) ;
  • 이상범 (부산대학교 동물생명자원과학과) ;
  • 강한석 (부산대학교 동물생명자원과학과) ;
  • 최윤재 (서울대학교 농생명공학부)
  • Received : 2011.03.29
  • Accepted : 2011.08.09
  • Published : 2011.08.31

Abstract

This study was conducted to investigate the effects of brown seaweed waste (BSW) fermented with DS-01 microbe on in vitro rumen microbial fermentation. In in vitro trial, three different diets supplemented with 2%, 4%, 6% BSW fermented with DS-01 either for one month or two months was tested at 3 h, 6 h, 9 h, 12 h, and 24 h incubation. The chemical composition (CP, EE, CF, and ash) between brown seaweed waste (BSW) and fermented BSW (FBSW) were not different. The contamination of pathogenic microbes was not detected in FBSW. The pH value tended to be higher with 6% level of supplementation of FBSW for one month than other treatments. The pH at 24 h was significantly higher in FBSW than that of treatments without FBSW (p<0.05). In FBSW for two months, the pH value in 6% FBSW at 3 h in vitro fermentation tended to be higher than 2% or 4% FBSW treatments (p=0.0540), but there were no differences in other fermentation times. Although the concentration of $NH_3$-N of BSW fermented for one month was higher than control at 3 h (p<0.05), the volatile fatty acid values were significantly increased in 4 and 6% FBSW fermented for one month at 6 h incubation (p<0.05). In BSW fermented for two months, the volatile fatty acid values were significantly decreased in 6% treatment at 9 h (p<0.05). As a result of in vitro trial, it was recommended that the 2~4% supplementation level of brown seaweed waste fermented with DS-01 microbe for two months could be utilized for in vivo trial in ruminants.

DS-01 균주 접종에 의한 미역부산물 발효산물이 분해 정도, 영양소 변화 및 미생물오염 정도에 관한 관찰과 반추위 발효성상에 미치는 영향을 관찰하여 미역부산물의 저장성 확보와 반추동물의 사료로서의 이용가능성을 발효단계에 따라 조사하였다. DS-01 균주와 함께 배양된 미역부산물은 발효 1개월부터 현저한 분해율을 보이기 시작했다. 미역부산물중의 영양성분 함량은 발효와 함께 커다란 변화를 나타내지 않았으며 모든 처리에서 반추동물에 병원성을 가지는 미생물은 검출되지 않았다. In vitro 실험에서는 발효시간 및 첨가농도에 따른 pH 변화, 암모니아태 질소와 휘발성지방산의 생성에 대한 영향을 조사하였다. pH의 경우 6% FBSW는 1개월 및 2개월 발효조건에서 대조구, 2% 및 4% FBSW 보다 pH 값이 증가한 것을 나타내었다. 암모니아태 질소의 생성에 미치는 영향을 보면 1개월 FBSW 경우 실험 3시간 경과 후가 대조구에 비해 높은 농도를 나타내었지만 시간이 경과에 따라 대조구보다 감소한 경향을 보인다. 2개월 FBSW의 경우 4% 첨가량만 24시간 경과 후 타 처리구에 비해 높은 농도를 나타내었다. 특히, 전 발효기간 동안 6% FBSW 처리구가 발효 3시간과 24시간 경과 후 타 처리구에 비하여 낮게 나타나는 경향을 보였다. 휘발성지방산의 경우 발효 1개월 미역부산물의 4, 6% FBSW 첨가구가 6시간 경과 후 총 VFA의 농도가 현저하게 증가하는 양상을 나타내었고(p<0.05), 발효 2개월 미역부산물의 2, 4% FBSW 첨가구가 9시간 경과 후 총 VFA 농도가 6% FBSW 첨가구에 비해 현저하게 증가하는 양상을 나타냈다(p<0.05).

Keywords

References

  1. Ahn, S. J., Kim, Y. S. and Park, W. P. 2004. Storage of waste-brown seaweed and degradation of alginate using microorganism. J. of the Environmental Sciences. 13(3):313-318. https://doi.org/10.5322/JES.2004.13.3.313
  2. Allen, V. G., Pont. K. R., Saker. K. E., Fontenot. J. P., Bagley. C. P., Ivy. R. L., Evans. R. R., Schmidt. R. E., Fike. J. H., Zhang. X., Ayad. J. Y., Brown. C. P., Miller. M. F., Montgomery. J. L., Mahan. J., Wester. D. B. and Melton. C. 2001. Tasco: Influence of a brown seaweed on antioxidants in forages and livestock-A review. J. Anim. Sci. 79(E. Suppl.):E21-E31. https://doi.org/10.2527/jas2001.79E-SupplE21x
  3. AOAC. 1995. Official Methods of Analysis 16th ed. Association of Official Analytical Chemists, Washington, DC.
  4. Back, I. K., Maeng, W. J., Lee, S. H., Lee, H. G., Lee, S. R., Ha, J. K., Lee, S. S. and Hwang, J. H. 2004. Effects of the brown seaweed residues supplementation on in vitro fermentation and milk production and composition of lactating dairy cows. Korean. J. Anim. Sci & Technol. 46(3):373-386. https://doi.org/10.5187/JAST.2004.46.3.373
  5. Bae, W., Kaya, K. N., Hancock, D. D., Call, D. R., Park, Y. H. and Besser, T. E. 2005. Prevalence and antimicrobial resistance of thermophilic Campylobacter spp. from cattle farms in Washington State. Appl Environ Microbiol. 2005 Jan;71(1):169-74. https://doi.org/10.1128/AEM.71.1.169-174.2005
  6. Beresford, N. A., Mayes, R. W., Colgrove, P. M., Barnett, C. L., Bryce, L., Dodd, B. A. and Lamb, C. S. 2000. A comparative assessment of the potential use of alginates and dietary calcium manipulation as countermeasures to reduce the transfer of radiostrontium to the milk of dairy animals. J. Environ. Radioactivity. 51:321-334. https://doi.org/10.1016/S0265-931X(00)00086-2
  7. Beresford, N. A., Mayes, R. W., MacEachem, P. J., Dodd, B. A. and Lamb, C. S. 1999. The effectiveness of Ca-alginate to reduce the transfer of radiostrontium to the goatsmilk. J. Environ. Radioactivity. 44:43-54. https://doi.org/10.1016/S0265-931X(98)00066-6
  8. Chaney, A. L. and Marbach, E. P. 1962. Modified reagents for determination of urea and ammonia. Clim. Biochem. 8: 130-132.
  9. Cho, Y. S., Lee, H. S., Kim, J. M., Ryu, P. D., Park, Y. H., Yoo, H. S. and Lee, M. H. 2003. Comparison of antimicrobial susceptibility of vancomycin resistant enterococci from animals and human. Kor. J. Vet. Publ. Hlth. 27(1):17-29.
  10. Erwin, E. S., Marco, S. J. and Emery, E. M. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  11. Greenwood, U., Hall, F. J., Orpen, C. G. and Paterson, I. W. 1983b. Microbiology of seaweed digestion in Orkney sheep. Proc. Physiol. Soc. 343:121.
  12. Greenwood, U., Orpen, C. G. and Paterson, I. W. 1983a. Digestibility of seaweed in Orkney sheep. Proc. Physiol. Soc. 343:120.
  13. Hur, J., Kim, J. M., Kwon, N. H., Park, K. T., Lim, J. Y., Jung, W. K., Hong, S. K. and Park, Y. H. 2004. Antimicrobial resistance patterns of Listeria species and Staphylococcus aureus isolated from poultry carcasses in Korea. Korea. J. Vet. Res. 44(2):217-224.
  14. Iwamoto, Y., Xu, X., Tamura, T., Oda, T. and Muramatsu, T. 2002. Enzymatically depolymerized alginate oligomers that cause cytotoxic cytokine production in human mononuclear cells. Biosci Biotechnol Biochem. 67(2):258-263.
  15. Keys, A., Grande, F. and Anderson, J. T. 1961. Fibers and pectin in the diet and serum cholesterol concentration in man. Proceeding of the Society of experimental biological medicine. 106:555-558.
  16. Kimura, Y., Watanabe, K. and Okuda, H. 1996. Effect of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J. Ethnophar. macology. 54:47-54. https://doi.org/10.1016/0378-8741(96)01449-3
  17. Klinkenberg, G., Lystad, K. Q., Levine, D. W. and Dyrset, N. 2001. Cell release from alginate immobilized Lactococcus lactis ssp. lactisin Chitosan and Alginate Coated Beads. J. Dairy. Sci. 84:1118-1127. https://doi.org/10.3168/jds.S0022-0302(01)74572-9
  18. Kwon, H. J., Park, K. Y., Yoo, H. S., Park, J. Y., Park, Y. H. and Kim, S. J. 2000. Differentiation of Salmonella entericaserotype gallinarum biotype pullorum from biotype gallinarum by analysis of phase 1 flagellin C gene (fliC), J Microbiol Methods. 40(1):33-38, https://doi.org/10.1016/S0167-7012(99)00129-3
  19. Lee, H. G., Hong, Z. S., Li, Z. H., Xu, C. X., Jin, X., Jin, M. G., Lee, H. J., Choi, N. J., Koh, T. S. and Choi, Y. J. 2005. Effect of brown seaweed waste supplementation on lactational performance and endocrine physiology in holstein lactating cows. Korean. J. Anim. Sci & Technol. 47(4):573-582. https://doi.org/10.5187/JAST.2005.47.4.573
  20. Lee, S. H., Kim, H. J., Jo, I. H., Ahn, J. H., Chang, M. B. and Maeng, W. J. 2001. Effects of soluble carbohydrate on ruminal fermentation and microbial growth in continuous culture. Korean. J. Anim. Sci & Technol. 43(5):695-706.
  21. Nishino, T., Fukuda, A., Nagumo, T., Fujihara, M. and Kaji, E. 1999. Inhibition of the generation of thrombin and factor Xa by a fucoidan from the brown seaweed Ecklonia kurome. Thrombosis Research 96:37-49. https://doi.org/10.1016/S0049-3848(99)00060-2
  22. Nishino, T., Yamauchi, T., Horie, M., Nagumo, T. and Suzuki1, H. 2000. Effects of a fucoidan on the activation of plasminogen by u-PA and t-PA. Thrombosis Research 99:623-634. https://doi.org/10.1016/S0049-3848(00)00289-9
  23. Piya, C., Hong, S. H., Choi, Y. J., Hwang, I. H., Lee, S. S. and Ha, J. K. 2001. Effect of Yucca extract on in vitro fermentation by mixed ruminal microorganism. Korean. J. Anim. Sci & Technol. 43(5):707-720.
  24. Rearte, D. H. and Santini, F. J. 1993. Rumen digestion of temperate pasture: effects on milk yield and composition. Page 562 in Proc. XVII Int. Grassl. Congr. N. Z.
  25. Steel, R. G. D. and Torrie, J. H. 1980. Principles and procedures of ststistics. A Biometrical approach (2nd eds). McGraw-Hill, Inc.
  26. Tsuji, K., Oshima, S., Tsuji-Matsusaki, E., Nakamura, A., Inami, T. and Suzuki, S. 1968. Effect of polysaccharides on cholesterol metabolism. Elyougaku Zasshi(in Japanese). 26:113-122.
  27. Tsuji, K., Tsuji, M. E. and Suzuki, S. 1977. Effect of polysaccharides on cholesterol metabolism. IV. Effects of various polysaccharide derivatives, lignin, and synthetic polymers on serum and liver cholesterol levels in rats. Elyougaku Zasshi (in Japanese). 35:227-234.
  28. Van, S. P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  29. Yamamoto, I., Takahashi, M., Suzuki, T., Seino, H. and Mori, H. 1984. Antitumor effect of seaweeds. IV. Enhancement of antitumor activity by sulfation of a crude fucoidan fraction from Sargassum kjellmanianum. Jpn. J. Exp. Med. 54(4):143-151.
  30. Yonekura, L. and Suzuki, H. 2003. Some polysaccharides improve zinc bioavailability in rats fed a phytic acid-containing diet. Nutrition Research 23:343-355. https://doi.org/10.1016/S0271-5317(02)00538-9
  31. Yoo, H. S., Lee, S. U., Park, K. Y. and Park, Y. H. 1997. Molecular typing and epidemiological survey of prevalence of Clostridium perfringens types by multiplex PCR. J Clin Microbiol. 35 (1):228-32.
  32. Zhuang, C., Itoh, H., Mizuno, T. and Ito, H. 1995. Antitumor active fucoidan from the brown seaweed, umitoranoo (Sargassum thunbergii). Biosci Biotechnol. Biochem. 59(4):563-567. https://doi.org/10.1271/bbb.59.563