DOI QR코드

DOI QR Code

Study of Via-Typed Air-Gap for Logic Devices Applications below 45 nm Node

  • Kim, Sang-Yong (Department of Semiconductor System, Korea Polytechnic College IV) ;
  • Kim, Il-Soo (Department of Semiconductor System, Korea Polytechnic College IV) ;
  • Jeong, Woo-Yang (Department of Semiconductor System, Korea Polytechnic College IV)
  • Received : 2011.03.08
  • Accepted : 2011.06.02
  • Published : 2011.08.25

Abstract

Back-end-of-line using ultra low-k (ULK; k < 2.5) has been required to reduce resistive capacitance beyond 45 nmtechnologies, because micro-processing units need higher speed and density. There are two strategies to manufacture ULK inter-layer dielectric (ILD) materials using an air-gap (k = 1). The former ULK and calcinations of ILD degrade the mechanical strength and induce a high cost due to the complication of following process, such as chemical mechanical polishing and deposition of the barrier metal. In contrast, the air-gap based low-k ILD with a relatively higher density has been researched on the trench-type with activity, but it has limited application to high density devices due to its high air-gap into the next metal layer. The height of air-gap into the next metal layer was reduced by changing to the via-typed air-gap, up to about 50% compared to that of the trench-typed air-gap. The controllable ULK was easily fabricated using the via-typed air-gap. It is thought that the via-type air-gap made the better design margin like via-patterning in the area with the dense and narrow lines.

Keywords

References

  1. J. Faguet, E. Lee, J. Liu, J. Brcka, and O. Akiyama, IEEE International Interconnect Technology Conference (Sapporo, Japan 2009 Jun. 1-3) p. 35. [DOI: 10.1109/IITC.2009.5090333].
  2. K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C. H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Rarade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, IEEE International Electron Devices Meeting (Washington, DC 2007 Dec. 10-12) p. 247. [DOI: 10.1109/IEDM.2007.4418914].
  3. M. Gallitre, A. Farcy, B. Blampey, C. Bermond, B. Flechet, and P. Ancey, Microelectron. Eng. 87, 321 (2010) [DOI: 10.1016/j.mee.2009.09.003].
  4. H. Park, M. Kraatz, J. Im, B. Kastenmeier, and P. S. Ho, Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications ed. Y. Shacham-Diamand, M. Datta, T. Osaka, and T. Ohba (Springer New York, 2009) p. 153. [DOI: 10.1007/978-0-387-95868-2_11].
  5. K. Chan and K. K. Gleason, J. Electrochem. Soc. 153, C223 (2006) [DOI: 10.1149/1.2168297].
  6. R. Daamen, P. H. L. Bancken, V. H. Nguyen, A. Humbert, G. J. A. M. Verheijden, and R. J. O. M. Hoofman, Microelectron. Eng. 84, 2177 (2007) [DOI: 10.1016/j.mee.2007.04.119].
  7. A. Piontek, T. Vanhoucke, S. Van Huylenbroeck, L. J. Choi, G. A. M. Hurkx, E. Hijzen, and S. Decoutere, Semicond. Sci. Technol. 22, S9 (2007) [DOI: 10.1088/0268-1242/22/1/s03].
  8. T. Ueda, T. Harada, A. Ueki, S. Kido, K. Tomita, Y. Kanda, T. Sasaki, H. Tsuji, T. Furuhashi, T. Kabe, J. Shibata, A. Iwasaki, J. Izumitani, Y. Kawano, and S. Matsumoto, AIP Conf. Proc. 1,143, 172 (2009) [DOI: 10.1063/1.3169257].
  9. C. J. Wilson, C. Zhao, L. Zhao, T. H. Metzger, Z. Tkei, K. Croes, M. Pantouvaki, G. P. Beyer, A. B. Horsfall, and A. G. O'Neill, Appl. Phys. Lett. 94, 181914 (2009) [DOI: 10.1063/1.3133345].
  10. J. Yuan, C. Ye, Z. Xing, Y. Xu, and Z. Ning, Microelectron. Eng. 86, 2119 (2009) [DOI: 10.1016/j.mee.2009.02.023].