DOI QR코드

DOI QR Code

Synthesis and Electrochemical Performance of Mesoporous Hollow Sphere Shape LiMn2O4 using Silica Template

실리카 템플레이트를 이용하여 다공성 중공형태를 갖는 LiMn2O4 합성 및 전기화학적 특성 연구

  • Received : 2011.08.22
  • Accepted : 2011.08.30
  • Published : 2011.08.31

Abstract

$LiMn_2O_4$ with mesoporous hollow sphere shape was synthesized by precipitation method with silica template. The synthesized $LiMn_2O_4$ has nanosized first particle and mesoporous hollow sphere shape. Silica template was removed by chemical etching method using NaOH solution. When the concentration of NaOH solution was increased, first particle size of manganese oxide was decrease and confirmed mesoporous hollow shpere shape. X-ray diffraction(XRD) patterns revealed that the synthesized samples has spinel structure with Fd3m space group. In case the ratio of silica and maganese salt increased, the size of first particles was decreased. The tetragoanal $LiMn_2O_4$ with micron size was synthesized at ratio of silica and manganese salt over 1 : 9. The prepared samples were assembled as cathode materials of Li-ion battery with 2032 type coin cell and their electrochemical properties are examined by charge-discharge and cyclic performance. Electrochemical measurements show that the nano-size particles had lower capacity than micron-size particles. But, cyclic performance of nano-size particles had better than that of micron-size particles.

다공성 중공형태의 $LiMn_2O_4$는 실리카 템플레이트과 침전법에 의해 합성되었다. 합성한 $LiMn_2O_4$는 나노사이즈의 1차입자를 가지며 다공성 중공형태를 가지고 있었다. 실리카 템플레이트의 제거는 NaOH를 이용하여 화학적 에칭법이 사용되었다. NaOH의 농도를 높여줌에 따라 망간산화물 입자 크기가 증가 하며 다공성의 중공구가 형성되었다. X-선 회절 분석을 통하여 합성된 $LiMn_2O_4$는 Fd3m의 공간 그룹을 가지는 스피넬 구조가 형성된 것을 확인 할 수 있었다. 실리카와 망간염의 비율을 높여주었을 경우 합성된 $LiMn_2O_4$는 1차입자의 크기는 감소한다. 실리카와 망간염의 비율이 1 : 9 이상인 경우에서 마이크론 단위의 정방정계의 $LiMn_2O_4$가 합성되었다. 다공성 중공형태의 $LiMn_2O_4$의 전기화학적 특성을 평가하기 위하여 2032형태의 코인셀을 제작하여 충/방전 테스트를 하였다. 나노사이즈의 1차입자를 가진 시료의 경우에는 마이크론 사이즈의 1차입자를 가진 시료보다 용량은 낮았지만 용량유지율은 향상되는 것 확인 할 수 있었다.

Keywords

References

  1. J. W. Fergus, 'Recent developments in cathode materials for lithium ion batteries' J. Power Sources, 195, 939 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.089
  2. J. H. Ju and K. S. Ryu, 'Synthesis and electrochemical performance of $Li(Ni_{0.8}Co_{0.15}Al_{0.05})_{0.8}(Ni_{0.5}Mn_{0.5})_{0.2}O_2$ with core-shell structure as cathode material for Li-ion batteries' J. Alloy Compd., 509, 7985 (2011). https://doi.org/10.1016/j.jallcom.2011.05.060
  3. T. A. Arunkumar, Y. Wu, and A. Manthiram, 'Factors Influencing the Irreversible Oxygen Loss and Reversible Capacity in Layered $Li[Li_{1/3}Mn_{2/3}]O_2Li[M]O_2\;(M=Mn_{0.5{-}y}Ni_{0.5{-}y}Co_{2y}$ and Ni_{1{-}y}Co_y) Solid Solutions' Chem. Mater., 19, 3067 (2007). https://doi.org/10.1021/cm070389q
  4. H. Liu, J. Xie, and K. Wang, 'Synthesis and characterization of nano-$LiFePO_4$/carbon composite cathodes from 2- methoxyethanol-water system' J. Alloy Compd., 459, 521 (2008). https://doi.org/10.1016/j.jallcom.2007.05.031
  5. M. Whittingham, 'Lithium batteries and cathode materials' Chem. Rev. Soc., 104, 4271 (2004). https://doi.org/10.1021/cr020731c
  6. C. J. Curtis, J. X. Wang, and D. L. Schulz, 'Preparation and characterization of $LiMn_2O_4$ spinel nanoparticles as cathode materials in secondary Li batteries' J. Elctrochem. Soc., 151, A590 (2004). https://doi.org/10.1149/1.1648021
  7. J. Y. Luo, H. M. Xiong and Y. Y. Xia, '$LiMn_2O_4$ nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery' J. Phys. Chem. C, 112, 12051 (2008). https://doi.org/10.1021/jp800915f
  8. A. M. Cao, J. S. Hu, H. P. Liang, and L. J. Wan, 'Selfassembled vanadium pentoxide ($V_2O_5$) hollow microspheres from nanorods and their application in lithium-ion batteries' Angew. Chem., Int. Ed., 44, 4391 (2005). https://doi.org/10.1002/anie.200500946
  9. E. Kim, D. Son, T. C. Kim, J. Cho, B. Park, K. S. Ryu, and S. H. Chang, 'A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries' Angew. Chem., Int. Ed., 43, 5987 (2004). https://doi.org/10.1002/anie.200454080
  10. J. Luo, L. Cheng, and Y. Xia, '$LiMn_2O_4$ hollow nanosphere electrode material with excellent cycling reversibility and rate capability' Electrochem. Comm., 9, 1404 (2007). https://doi.org/10.1016/j.elecom.2007.01.058
  11. K. Kanamura, K. Dokko, and T. Kaizawa, 'Synthesis of spinel $LiMn_2O_4$ by a hydrothermal process in supercritical water with heat-treatment' J. Elctrochem. Soc., 152, A391 (2005). https://doi.org/10.1149/1.1850376
  12. S. H. Ryu, S. G. Hwang, S. R. Yun, K. K. Cho, K. W. Kim, and K. S. Ryu, 'Synthesis and electrochemical characterization of silica-manganese oxide with a core-shell structure and various oxidation states' Bull. Korean Chem. Soc., 32, 2683 (2011). https://doi.org/10.5012/bkcs.2011.32.8.2683
  13. X. Zhang, W. Yan, H. Yang, B. Liu, and H. Li, 'Gaseous infiltration method for preparation of three-dimensionally ordered macroporous polyethylene' Polymer, 49, 5446 (2008). https://doi.org/10.1016/j.polymer.2008.09.064
  14. X. Tang, Z-h. Liu, C. Zhang, Z. Yang, and Z. Wang, 'Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area' J. Power Sources, 193, 939 (2009). https://doi.org/10.1016/j.jpowsour.2009.04.037