DOI QR코드

DOI QR Code

중·저온형 고체산화물 연료전지 공기극의 적용을 위한 Sr이 치환된 이중층 페로브스카이트 기반 복합공기극 물질의 분말 크기 및 열 사이클에 따른 전기화학특성 분석

Electrochemical Investigation in Particle Size and Thermal Cycles of Sr Doped Layered Perovskite Based Composite Cathodes for Intermediate Temperature-operating Solid Oxide Fuel Cell

  • 김정현 (국립 한밭대학교 신소재공학부 응용소재공학과)
  • Kim, Jung-Hyun (Department of Applied Materials Engineering, Hanbat National University)
  • 투고 : 2011.07.30
  • 심사 : 2011.08.17
  • 발행 : 2011.08.31

초록

본 연구에서는 Sr이 치환된 이중층 페로브스카이트($SmBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$, SBSCO)와 전해질 물질로 사용되는 $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$ (CGO91)을 기반으로 한 중 저온형 고체산화물 연료전지 (ITSOFC) 복합공기극의 분말 크기와 열 사이클에 대한 전기화학특성을 연구하였다. 복합공기극의 모체가 되는 SBSCO에 CGO91물질을 이용하여 면적비저항을 확인 한 결과 약 $0.54\sim9.04{\mu}m$의 분말 크기를 보이는 SBSCO와 $0.4\sim42{\mu}m$의 분말 크기를 보인 CGO91이 각각 50 wt%로 구성된 SBSCO : 50 복합공기극이 600 및 $700^{\circ}C$에서 약 0.102 및 $0.013{\Omega}cm^2$의 우수한 면적비 저항을 가지는 것을 확인 하였으며 상대적으로 분말 크기가 큰 CGO91 분말을 이용한 두 개의 공기극의 경우 $700^{\circ}C$에서 약 $0.260{\Omega}cm^2$$0.055{\Omega}cm^2$의 특성을 보여주었다. 10회에 걸친 열 사이클실험을 통하여 SBSCO : 50의 면적비저항은 $0.0193{\Omega}cm^2$에서 $0.094{\Omega}cm^2$로 증가하였으며 7회 이후의 면적비저항은 일정하게 유지됨을 확인하였다.

The electrochemical characteristics from various particle sizes of $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$ (CGO91) in composite cathode comprised of the samarium-strontium doped layered perovskite ($SmBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$) and CGO91 have been investigated for possible application as a cathode material for an intermediate temperature-operating solid oxide fuel cell (IT-SOFC). The area specific resistances (ASRs) of composite cathodes with CGO91 having smaller particle size ($0.4\sim42{\mu}m$) and SBSCO of 1 : 1 ratio (50wt% SBSCO and 50 wt% CGO91, SBSCO: 50) give the lowest ASR of $0.10{\mu}cm^2$ at $600^{\circ}C$ and $0.013{\Omega}cm^2$ at $700^{\circ}C$. However, composite cathodes with having relatively bigger CGO91 particle size show the two times higher ASR results than those of SBSCO : 50. From the 10 times thermal cycles in SBSCO : 50, the ASRs of SBSCO : 50 increased from $0.0193{\Omega}cm^2$ to $0.094{\Omega}cm^2$ at $700^{\circ}C$, however, the ASR value was maintained after 7 times of thermal cycling.

키워드

참고문헌

  1. A. E. Lutz, R. S. Larson, and J. O. Keller, 'Thermodynamic comparison of fuel cells to the Carnot cycle' Int. J. Hydrogen Energy, 27, 1103 (2002). https://doi.org/10.1016/S0360-3199(02)00016-2
  2. R. O'Hayre, S. W. Cha, W. Colella, and Fritz B. Prinz, 'Fuel Cell Fundamentals' Wiley, New York, USA (2006).
  3. G. Hoogers, 'Fuel cell technology' CRC, USA, (2003).
  4. S. C. Singhal and K. Kendall, 'High Temperature Solid Oxide Fuel Cells : Fundamentals, Design and Applications' Elsevier, Oxford, UK (2003).
  5. B. C. H. Steele and A. Heinzel, 'Materials for fuel-cell technologies' Nature, 414, 345 (2001). https://doi.org/10.1038/35104620
  6. W. Chen, T. Wen, H. Nie, and R. Zheng, 'Study of $Ln_{0.6}Sr_{0.4}Co_{0.8}Mn_{0.2}O_3$(Ln = La, Gd, Sm, or Nd) as the cathode materials for intermediate temperature SOFC' Mater. Res. Bull., 38, 1319 (2003). https://doi.org/10.1016/S0025-5408(03)00143-0
  7. S. Hashimoto, K. Kammer, P. Larsen, F. Poulsen, and M. Mogensen, 'A Study of $Pr_{0.7}Sr_{0.3}Fe_{1-x}Ni_xO_{3-{\delta}}$ as a cathode material for SOFCs with intermediate operating tem-perature' Solid State Ion., 176, 1013 (2005). https://doi.org/10.1016/j.ssi.2004.09.010
  8. B. C. H. Steele and J. M. Bae, 'Properties of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-x}$ (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes' Solid State Ion., 106, 255 (1998). https://doi.org/10.1016/S0167-2738(97)00430-X
  9. Z. Shao and S. M. Haile, 'A high performance cathode for the next generation solid-oxide fuel cells' Nature, 431, 170 (2004).
  10. A. A. Taskin, A. N. Lavrov, and A. Yoichi, 'Fast oxygen diffusion in A-site ordered perovskites' Prog. Solid State Chem., 35, 481 (2007). https://doi.org/10.1016/j.progsolidstchem.2007.01.014
  11. C. Aimin, J. S. Stephen, and A. K John, 'Electrical properties of $GdBaCo_2O_{5+x}$ for IT SOFC applications' Solid State Ion., 177, 2009 (2006). https://doi.org/10.1016/j.ssi.2006.05.047
  12. T. Albert, J. S. Stephen, J. C. Richard, F. Hernández- Ramírez, and A.K. John 'Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells' J. Mater. Chem., 17, 3175 (2007).
  13. T. Vogt, P. M. Woodward, P. Karen,B. A. Hunter, P. Henning, and A. R. Moodenbaugh, 'Low to high spinstate transition induced by charge ordering in antiferromagnetic $YBaCo_2O_5$' Phys. ReV. Lett., 84, 2969 (2000). https://doi.org/10.1103/PhysRevLett.84.2969
  14. E. Suard, F. Fauth, V. Caignaert, I. Mirebeau, and G. Baldinozzi, 'Charge ordering in the layered Co-based perovskite $HoBaCo_2O_5$' Phys. ReV. B, 61, R11871 (2000). https://doi.org/10.1103/PhysRevB.61.R11871
  15. A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, and B. Raveau, 'Structural and magnetic studies of ordered oxygen-deficient perovskites $LnBaCo_2O_{5+}{\delta}$, closely Related to the "112" Structure' J. Solid State Chem., 142, 247 (1999).
  16. F. Fauth, E. Suard, V. Caignaert, and I. Mirebeau, 'Spin-state ordered clusters in the perovskite $NdBaCo_2O_{5.47}$' Phys. Rev. B. 66,184421(1) (2002).
  17. H. Wu, 'Spin state and phase competition in $TbBaCo_2O_{5.5}$ and the lanthanide series $LBaCo_2O_{5+{\delta}}$ (0 < -$\delta$<-1)' Phys. Rev. B. 64, 092413(1) (2001).
  18. A. K. Azad, J. H. Kim, and J. T. S. Irvine, 'Structureproperty relationship in layered perovskite cathode $LnBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$ (Ln = Pr, Nd) for solid oxide fuel cells' J. Power Sources, 196, 7333 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.063
  19. J. H. Kim, M. Cassidy, J. T. S. Irvine, and J. M. Bae 'Advanced electrochemical properties of $LnBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$ (Ln = Pr, Sm, and Gd) as Cathode Materials for ITSOFC' J. Electrochem. Soc., 156, B682 (2009). https://doi.org/10.1149/1.3110989
  20. J. H. Kim, M. Cassidy, J. T.S. Irvine, and J.M. Bae 'Electrochemical investigation of composite cathodes with $SmBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$ cathodes for intermediate temperature-operating solid oxide fuel cell' Chem. Mater., 22, 883 (2010). https://doi.org/10.1021/cm901720w
  21. R. D. Shannon, 'Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides' Acta Crystallogr., Sect. A. A32,751 (1976).
  22. M. G. Chourashiya, S. R. Bhardwaj, and L. D. Jadhav, 'Fabrication of 10%Gd-doped ceria (GDC)/NiO-GDC half cell for low or intermediate temperature solid oxide fuel cells using spray pyrolysis' J. Solid State Chem., 14, 1869 (2010).
  23. S. H. Choi, C. S. Hwang, H.-W. Lee, and J. Kim, 'Fabrication of $Gd_2O_3-Doped\;CeO_2$ thin films for singlechamber- type solid oxide fuel cells and their characterization' J. Electrochem. Soc., 156, B381 (2009). https://doi.org/10.1149/1.3056036
  24. E. Perry Murray, M. J. Sever, and S. A. Barnett, 'Electrochemical performance of $(La,Sr)(Co,Fe)O_3-(Ce,Gd)O_3$ composite cathodes' Solid State Ion., 148, 27 (2002). https://doi.org/10.1016/S0167-2738(02)00102-9
  25. C. Peters, A. Weber, and E. Ivers-Tiffee, 'Nanoscaled $(La_{0.5}Sr_{0.5})CoO{3{\delta}}$ thin film cathodes for SOFC application at 500${^{\circ}C}$ < T < 700${^{\circ}C}$' J. Electrochem. Soc., 155 (7), B730 (2008). https://doi.org/10.1149/1.2909552
  26. J. Yang, W. Yue, X. Bo, X. Yi, and Q. Yitai, 'Moderate temperature synthesis of nanocrystalline $Co_3O_4$ via gel hydrothermal oxidation' Mater. Chem. Phys., 74, 234 (2002). https://doi.org/10.1016/S0254-0584(01)00463-1
  27. O. Yammamoto, Y. Takeda, R. Kanno, and M. Noda, 'Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells' Solid State Ion., 22, 241 (1987). https://doi.org/10.1016/0167-2738(87)90039-7
  28. N. Q. Minh, 'Ceramic fuel cell' J. Am. Ceram. Soc., 76, 563 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  29. H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, 'Chemical thermodynamic considerations in sintering of $LaCrO_3$-based perovskites' J. Electrochem. Soc., 138, 2719 (1991). https://doi.org/10.1149/1.2086043
  30. F. M. Figueiredo, J. A. Labrincha, J. R. Frade, and F. M. B. Marques, 'Reactions between a zirconia-based electrolyte and $LaCoO_3$-based electrode materials' Solid State Ion., 101-103, 343 (1997). https://doi.org/10.1016/S0167-2738(97)00127-6
  31. G. Ch. Kostogloudis, and Ch. Ftikos 'Chemical compatibility of $RE_{1-x}Sr_xMnO_{3{\pm}{\delta}}$ (RE = La, Pr, Nd, Gd, 0 ${\leq}$ x ${\leq}$ 0.5) with yttria stabilized zirconia solid electrolyte' J. Eur. Ceram. Soc., 18, 1707 (1998). https://doi.org/10.1016/S0955-2219(98)00096-X
  32. J. H. Kim, J. Bae, M. Cassidy, P. A Connor, W. Zhou, and J. T. S. Irvine, '$SmBaCo_2O_{5+d}$ and $LnBa_{0.5}Sr_{0.5}Co_2O_{5+d}$ potential cathode materials for IT-SOFC' ECS Transactions, 25(2), 2707 (2009)
  33. F. Tietz, 'Thermal expansion of SOFC materials' Ionics, 5, 129 (1999). https://doi.org/10.1007/BF02375916
  34. B. C. H. Steele? 'Survey of materials selection for ceramic fuel cells II. Cathodes and anodes' Solid State Ion., 86-88, 1223 (1996). https://doi.org/10.1016/0167-2738(96)00291-3