DOI QR코드

DOI QR Code

Post Ranking in a Blogosphere with a Scrap Function: Algorithms and Performance Evaluation

스크랩 기능을 지원하는 블로그 공간에서 포스트 랭킹 방안: 알고리즘 및 성능 평가

  • 황원석 (한양대학교 전자통신컴퓨터공학과) ;
  • 도영주 (매크로임팩트(주) 연구원) ;
  • 김상욱 (한양대학교 정보통신대학 정보통신학부)
  • Received : 2010.12.02
  • Accepted : 2011.01.24
  • Published : 2011.04.30

Abstract

According to the increasing use of blogs, a huge number of posts have appeared in a blogosphere. This causes web surfers to face difficulty in finding the quality posts in their search results. As a result, post ranking algorithms are required to help web serfers to effectively search for quality posts. Although there have been various algorithms proposed for web-page ranking, they are not directly applicable to post ranking since posts have their unique features different from those of web pages. In this paper, we propose post ranking algorithms that exploit actions performed by bloggers. We also evaluate the effectiveness of post ranking algorithms by performing extensive experiments using real-world blog data.

블로그의 사용량이 증가함에 따라 다수의 포스트들이 블로고스피어 내에 작성되고 있으며, 이는 검색에서 웹 서퍼가 양질의 포스트를 찾기 어렵게 하는 문제를 가져왔다. 이로 인하여 포스트 검색에서 랭킹을 부여하기 위한 랭킹 알고리즘의 필요성이 부각되고 있다. 기존에 웹 문서를 위한 다양한 랭킹 알고리즘들이 있었으나, 웹 문서와 포스트의 차이로 인하여 직접 적용하기 어렵다는 문제점이 존재한다. 본 논문에서는 블로거들이 포스트에 남긴 블로그 액션을 이용하여 포스트에 랭킹을 부여하는 방안인 포스트 랭킹 알고리즘들을 제안한다. 그리고 실제 블로그 데이터를 이용하여 포스트 랭킹 알고리즘들의 성능을 분석하고, 이를 바탕으로 블로그에 적합한 포스트 랭킹 알고리즘을 선별한다.

Keywords

References

  1. J. Kleinberg, "Authoritative Sources in a Hyperlinked Environment," In Proc. of the 9th ACM-SIAM Symp. on Discrete Algorithms, pp.668-677, 1998.
  2. A. Borodin, R. Gareth, S. Jeffrey, and T. Panayiotis, "Link Analysis Ranking: Algorithms, Theory, and Experiments," ACM Transactions on Internet Technology, 5(1):231-297, 2005. https://doi.org/10.1145/1052934.1052942
  3. S. Brin and L. Page, "The Anatomy of a Large-scale Hypertextual Web Search Engine," In Proc. of the 7th Int'l Conf. on World Wide Web, WWW, pp.107-117, 1998.
  4. R. Lempel and S. Morgan, "The Stochastic Approach for Link-Structure Analysis (SALSA) and the TKC Effect," In Proc. of the 9th Int'l Conf. on World Wide Web, WWW, pp.387-401, 2000.
  5. K. Fujimura, T. Inoue, and M. Sugisaki, "The Eigenrumor Algorithm for Ranking Blogs," In Proc. of the 14th Int'l Conf. on World Wide Web, WWW, 2005.
  6. W. Hwang, S. Kim, D. Bae and Y. Do, "Post Ranking Algorithms in Blog Environment," In Proc. of the 2nd Int'l Conf. on Future Generation Communication and Networking Symposia, pp.64-67, 2008.
  7. V. Rijsbergen, C.J. Information Retrieval. 2nd edition, 1979, London, Butterworths.
  8. S. Chakrabarti, Mining the Web: Discovering Knowledge from Hypertext Data, Morgan-Kaufmann Publishers, 2002.
  9. T. Haveliwala, "Topic Sensitive Pagerank," In Proc. of the 11th Int'l Conf. on World Wide Web, WWW, pp.517-526, 2002.
  10. A. Ng, A. Zheng, and M. Jordan, "Link Analysis, Eigenvectors, and Stability," In Proc. of the 17th Int'l Joint Conf. on Artificial Intelligence, pp.903-910, 2001.
  11. L. Nie, B. Wu, and B. D. Davison, "A Cautious Surfer for Pagerank," In Proc. of the 16th Int'l Conf. on World Wide Web, WWW, pp.1119-1120, 2007.
  12. D. Rafiei and A. Mendelzon, "What is This Page Known for? Computing Web Page Reputations," In Proc. of the 9th Int'l Conf. on World Wide Web, WWW, pp.823-835, 2000.
  13. M. Richardson and P. Domingos, "The Intelligent Surfer: Probabilistic Combination of Link and Content Information in Pagerank," In Advances in Neural Information Processing Systems, pp.1441-1448, 2002.
  14. K. Bharat and M. Henzinger, "Improved Algorithms for Topic Distillation in a Hyperlinked Environment," In Proc. of the 21st annual int'l ACM SIGIR conf. on Research and development in information retrieval, pp.104-111, 1998.
  15. S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan, "Automatic Resource Compilation by Analyzing Hyperlink Structure and Associated Text," In Proc. of the 7th Int'l Conf. on World Wide Web, WWW, pp.65-74, 1998.
  16. M. Diligenti, M. Gori, and M. Maggini, "Web Page Scoring Systems for Horizontal and Vertical Search," In Proc. of the 11th Int'l Conf. on World Wide Web, WWW, pp.508-516, 2002.
  17. C. Ding, X. He, P. Husbands, H. Zha, and H. Simon, "PageRank, HITS and a Unifed Framework for Link Analysis," In Proc. of the 25th ACM SIGIR Conf., pp.353-354, Tampere, Finland, Aughust, 2002.
  18. S. Yoon, S. Kim, and S. Park, "Determining the Strength of the Propensities of a Blog Network," In Proc. IEEE International Symp. on Computational Intelligence and Data Mining, pp.140-145, Sheraton Music City Hotel, Nashville, TN, USA, Mar. 30 - Apr. 2, 2009. https://doi.org/10.1109/CIDM.2009.4938641
  19. P. Lynch, X. Luan, M. Prettyman, L. Mericle, E. Borkmann, and J. Schlaifer, "An Evaluation of New and Old Similarity Ranking Algorithms," In Proc. Int'l Conf. on Information Technology: Coding and Computing, pp.148-149, 2004. https://doi.org/10.1109/ITCC.2004.1286615
  20. K. Jeong, "Blog Rank System Using User Feedback and Authority Estimation," Ph. D. Dissertation, Graduate School Chonnam National University, 2009.
  21. E. Adar, L. Zhang, L. Adamic, and R. Lukose, "Implicit Structure and the Dynamics of Blogspace," Workshop on the Weblogging Ecosystem at the 13th Int'l Conf. on World Wide Web, WWW, 2004.
  22. K. Apostolos, S. Martha, and V. Iraklis, "BlogRank: Ranking Weblogs based on Connectivity and Similarity Features," In Proc. of the 2nd int'l workshop on Advanced architectures and algorithms for internet delivery and applications, AAA-IDEA, 2006.
  23. A. T. Mohamad, S. M. Hashemi, and M. Ali, "B2Rank: An Algorithm for Ranking Blogs Based on Behavioral Features," In Proc. of the IEEE/WIC/ACM Int'l Conf. on Web Intelligence, pp.104-107, 2007. https://doi.org/10.1109/WI.2007.81

Cited by

  1. Post ranking in a blogosphere vol.15, pp.1, 2015, https://doi.org/10.1145/2753060.2753063