
컴파일러에 의한 C레벨 에러 체크 109

컴파일러에 의한 C레벨 에러 체크

정 지 문
†
․윤 종 희

††
․이 종 원

†††
․백 윤 흥

††††

요 약

IR(Intermediate Representation) 최적화 과정은 컴파일러 back-end의 중요한 부분으로서 sub-expression elimination, dead code elimination

등 최적화 기법들을 사용한다. 하지만 IR 최적화 단계에서 생기는 에러들을 검출하고 디버깅하는데 많은 어려움이 있다. 그 첫 번째 이유로는

컴파일 된 어셈블리 코드를 해독하여 에러를 체크하기 어렵고 두 번째로는 IR 최적화 단계에서 에러가 생겼는지 결정 짓기 어렵기 때문이다.

이런 이유들로 인하여, 우리는 C 레벨에서 IR 코드변환 무결점 여부를 체크하기 위한 기법들에 관한 연구를 진행하여 왔다. 우리는

MeCC(Memory Comparison-based Clone) 탐색기를 기반으로 하여, 최적화하기 전 IR코드와 최적화 한 후의 IR코드를 각각 C코드로 다시 변

환한 뒤, 이 두 개의 C코드를 MeCC의 입력으로 주고, 결과의 일치 여부를 확인하는 방법을 사용한다. 하지만 MeCC가 완벽한 결과를 알려주

지 않기 때문에, 우리는 각 IR 최적화 기법마다의 특징에 대한 정보를 사전에 처리해서 그 결과의 정확도를 높였다. 이 논문에서는 dead code

elimination, instruction scheduling 및 common sub-expression elimination 등 최적화 기법들을 이용한 변환 코드들을 예시로 실험하여 최종적

으로 MeCC에서의 C 레벨 코드의 정확한 에러 체크 동작여부를 보여준다.

키워드 :컴파일러 최적화, 정확성 증명

Compiler triggered C level error check

Zhiwen Zheng†․Jonghee M. Youn††․Jongwon Lee†††․Yunheung Paek††††

ABSTRACT

We describe a technique for automatically proving compiler optimizations sound, meaning that their transformations are always

semantics-preserving. As is well known, IR (Intermediate Representation) optimization is an important step in a compiler backend. But

unfortunately, it is difficult to detect and debug the IR optimization errors for compiler developers. So, we introduce a C level error check

system for detecting the correctness of these IR transformation techniques. In our system, we first create an IR-to-C converter to

translate IR to C code before and after each compiler optimization phase, respectively, since our technique is based on the Memory

Comparison-based Clone(MeCC) detector which is a tool of detecting semantic equivalency in C level. MeCC accepts only C codes as its

input and it uses a path-sensitive semantic-based static analyzer to estimate the memory states at exit point of each procedure, and

compares memory states to determine whether the procedures are equal or not. But MeCC cannot guarantee two semantic-equivalency

codes always have 100% similarity or two codes with different semantics does not get the result of 100% similarity. To increase the

reliability of the results, we describe a technique which comprises how to generate C codes in IR-to-C transformation phase and how to

send the optimization information to MeCC to avoid the occurrence of these unexpected problems. Our methodology is illustrated by three

familiar optimizations, dead code elimination, instruction scheduling and common sub-expression elimination and our experimental results

show that the C level error check system is highly reliable.

Keywords : Compiler Optimization, Correctness Proofs

1. 서 론1)

※ This work was supported by the Korea Science and Engineering
Foundation(KOSEF) NRL Program grant funded by the Korea
government(MEST) (No. 2010-0018465), the Engineering Research Center of
Excellence Program of Korea Ministry of Education, Science and
Technology(MEST) / Korea Science and Engineering Foundation(KOSEF)
(Grant 2010-0001724), the Basic Science Research Program through the
National Research Foundation of Korea(NRF) funded by the Ministry of
Education, Science and Technology (Grant 2011-0012522).

†준 회 원:서울대학교 전기컴퓨터공학부 석사
††정 회 원:강릉원주대학교 컴퓨터공학과 강의전담교수(교신저자)
†††준 회 원:서울대학교 전기컴퓨터공학부 박사과정
††††종신회원:서울대학교 전기컴퓨터공학부 교수

논문접수: 2011년 2월 16일
수 정 일 : 1차 2011년 4월 6일
심사완료: 2011년 4월 6

DOI: 10.3745/KIPSTA.2011.18A.3.109



110 정보처리학회논문지 A 제18-A권 제3호(2011. 6)

1. Introduction

Compiler is an important part of the software

development infrastructure relied upon by programmers. If

a compiler is faulty, then all programs compiled with it

would have some errors. Unfortunately, it is hard to

detect and debug compiler errors by programmers. There

are two main reasons why it is difficult. First, it is not

easy to inspect the output of the compiler. Problems of

the output are often found only by running a compiled

program. Second, it is difficult to determine whether

errors come from the compiler or the source program that

was compiled when problems are detected.

For these reasons, it is very useful to develop tools and

techniques that give compiler developers and programmers

confidence in their compilers. One way to gain confidence

in the correctness of a compiler is to run it on various

benchmark programs and check that the optimized version

of each program produces correct results on various

inputs. While this method can check the correctness of

the compiler, it cannot provide any useful information

when the error appears, and it is difficult to know which

phase of the compiler causes the errors.

To ensure that a compiler works correctly, it should be

proven to be sound, which means each compilation phase

does not change the semantics of the source program.

Optimizations, but sometimes even in complete compilers,

have been proven sound by hand [1, 2, 3, 4, 5, 6, 7, 8].

However, it takes a long time and requires a lot of effort

to manually prove the soundness of a compiler.

In this paper, we present a new technique for proving

the soundness of compiler optimizations in C level. We

first create an IR-to-C converter to translate

IR(intermediate representation) to C code before and after

each compiler optimization phase, respectively, since our

technique is based on the Memory Comparison-based

Clone(MeCC) detector[9] which is a tool of detecting

semantic equivalency in C level. Then we input the two

C codes generated by IR-to-C converter into MeCC to

detect whether or not they keep semantic equivalence. In

this way, we can prove each compiler phase respectively,

if there exist some problems in a specific phase, we just

need to modify the part of the code.

This paper organized as follows. Section 2 presents the

architecture of IR optimization error check system.

Section 3 presents the technique of how to increase the

whole system’s reliability. Experimental result about code

size and the accuracy of the whole system are presented

in section 4, and Section 5 offers our Conclusions.

2. Architecture of the IR Optimization Error

Check System

We describe a technique for automatically proving

compiler optimizations sound, meaning that their

transformations are always semantics-preserving. As is

well known, IR (Intermediate Representation) optimization

is an important step in a compiler backend. In this step,

a compiler can serve several optimization techniques such

as common sub-expression elimination, dead code

elimination and so on. But unfortunately, the IR

optimization errors can be difficult for compiler developers

to detect and debug, as briefly mentioned in Section 1.We

create a C level error check system to ensure the

correctness of these IR transformation techniques. In our

system as shown in (Figure 1), we first create an

IR-to-C converter to translate IR to C code before and

after each compiler optimization phase, respectively, since

our technique is based on the Memory Comparison-based

Clone(MeCC) detector which is a tool of detecting

semantic equivalency in C level. Our IR-to-C converter is

based on a compiler named SoarGen[10] which is a

re-targetable compiler platform we have invented. Then

we input the two C codes generated by IR-to-C

converter to MeCC to detect whether they keep semantic

equivalence or not.

MeCC accepts only C codes as its input and it uses a

path-sensitive semantic-based static analyzer to estimate

the memory states at exit point of each procedure, and

compares memory states to determine whether the

procedures are semantically equivalent or not. Although it

can effectively detect semantic clones, sometimes the

result of MeCC cannot get 100% similarity. To increase

the credibility of the results, we describe a technique

which comprises how to generate C codes in IR-to-C

transformation phase and how to send the optimization

information to MeCC to avoid the occurrence of these

unexpected problems.

And with the optimization information, MeCC can get

100% similarity when the two C codes are semantically

equivalent. In this way, we avoid some unexpected

problems and increase the similarity rate of the result. So

when the result is 100%, it means the C codes are

semantically equivalent, and also means the IR codes

before and after optimizations are semantically equivalent.

When the result is not 100%, we can say that the two C

codes are not semantically equivalent, and the IR

optimization phase runs incorrectly. So in this way, we

can find which phase generates errors.



컴파일러에 의한 C레벨 에러 체크 111

(Figure 1) Infrastructure for IR optimization error check system

3. How to Increase the Reliability

The MeCC uses a path-sensitive semantic-based static

analyzer to estimate the memory states at exit point of

each procedure, and compares memory states to determine

whether the procedures are semantically equivalent or not.

Since the abstract memory states have a collection of the

memory effects along the execution paths within

procedures, it can effectively detect semantic clones.

However, It is not perfect since the disadvantage of

MeCC is that it may cause some unexpected problems.

For instance, MeCC cannot guarantee two semantic-

equivalency codes always have 100% similarity or two

codes with different semantics cannot get the result of

100% similarity. MeCC only compares the memory state

at exit point of procedure, it does not care whether the

intermediate phases keep the same semantic or not, so it

may still get 100% similarity ratio even if the two codes

are not semantically equivalent. At the exit point of the

procedure, if the number of memory entries is different

from each other, it will not get 100% similarity ratio even

if the two codes are semantically equivalent. We will

illustrate these problems by three familiar optimizations

such as dead code elimination, instruction scheduling and

common sub-expression elimination.

3.1 Dead Code Elimination

There are 3 different cases after dead code elimination.

The first case: definition – definition

As shown in (Figure 2), the variable VASM_R[140] is

defined at the first line, and then defined again at the

second line without any use. In this case, it does not

affect the result to eliminate the previous definition of

VASM_R[140], and the memory state of the variable is

still equal at the exit point of the procedure. Therefore

the optimized version will not cause different abstract

memory state.

(Figure 2) Dead code elimination (1)

The second case : definition – use – definition

As shown in (Figure 3), if the compiler eliminates a

dead code incorrectly, it will affect the other variables,

and the value of some other variables will be changed,

which will cause some of the memory states not to keep

equal at the exit of the procedure. Therefore MeCC will

not get 100% similarity, and it shows that the dead code

elimination algorithm is performed incorrectly.

(Figure 3) Dead code elimination (2)

The third case: definition – no use

(Figure 4) Dead code elimination (3)



112 정보처리학회논문지 A 제18-A권 제3호(2011. 6)

As shown in (Figure 4), the variable VASM_R[141] is

defined at the first line, but it will not be used until the

end of the procedure, so the first line is a dead code. But

when the two C codes are input to MeCC, the result

will not get 100% similarity since the memory state of

the variable VASM_R[141] does not keep equality.

To avoid this case, we introduce a new variable, which

is assigned to the variable whose later definition will be

eliminated, and insert an assignment instruction just

before the eliminated code as shown in (Figure 5).

Finally, the information of the eliminated variable is sent

to MeCC in order to ignore the difference of the memory

state of the variables during the memory comparison

algorithm and to get higher similarity.

(Figure 5) Dead code elimination (4)

3.2 Common Sub-expression Elimination

As shown in (Figure 6), the code is optimized correctly

but the optimized code may have some more temporary

variables than original code, so in this case, it causes

some unexpected problems in MeCC phase. Since the

abstract memory states have a collection of all the

memory effects along the execution paths within

procedures, the abstract memory state will certainly

collect the temporary variable generated by optimization

phases. So the optimized code will have some more

temporary variable states in the abstract memory state.

These abstract memory states of the optimized code

cannot match with the one of the original code, so the

result will not get 100% similarity ratio even if the two

codes are semantically equivalent.

(Figure 6) Common sub-expression elimination

To avoid this case, we need to send the variable

information to MeCC so that it can ignore the difference

of the memory state of the variable during the memory

comparison algorithm and get higher similarity. Certainly

the temporary variables generated by optimization phase

keep signatures so that we can guarantee that the name

of the temporary variable is unique in the whole

procedure.

3.3 Instruction Scheduling

After instruction scheduling, if an optimized phase does

not break the define-use (DU) chain of the procedure, it

means the optimization keep semantically equivalent, also

the memory state of each variables at the exit point of

the procedure keep the same, and the result will get

100% similarity. If an optimized phase breaks the DU

chain of the procedure, it will change some variable

states, and the result of MeCC will not get 100%

similarity. But in some special case, although the code

motion is incorrect, MeCC will still get 100% similarity.

(Figure 7) show an example of an incorrect

optimization. The variable VASM_R[140] is used in line 2,

and its definition is in line 1. After instruction scheduling,

the DU chain of variable VASM[140] is broken, but the

memory state at the exit point of the procedure is not

changed since the instruction “printf” is not memory

effect instruction. Therefore it causes the result of 100%

similarity even if the code motion is incorrect.

(Figure 7) Instruction scheduling (1)



컴파일러에 의한 C레벨 에러 체크 113

To avoid this case, we introduce new variables, which

are assigned to all the function parameters. Certainly we

first need to guarantee the new variables are unique in

the whole procedure as shown in (Figure 8).

(Figure 8) Instruction scheduling (2)

We use these new variables to check whether the

function calls are semantically equivalent or not. If the

memory states of the variables are equal, it means all the

function parameters keep the same, it also means the

semantic of these function calls are equivalent. In these

ways, we avoid the occurrence of these unexpected

problems to increase the reliability of whole system.

4. Experimental Results

In order to test the accuracy of our IR optimization

error check system, our IR-to-C translator coverts IR to

C code at each optimization phases in the compiler, then

compares the two generated C codes before and after IR

optimization phase. To guarantee the correctness of the

IR optimization, we optimized it manually. We test the

accuracy ratio of IR optimization error check system in

20 small-scale open source projects, and in IR

optimization phase, we manually optimize them correctly

and incorrectly. Then we compare the original code with

the incorrect optimized code and correct optimized code

respectively. As shown in (Figure 9), the average code

size of the 20 small-scale benchmarks is 5226 lines, but

the average code size of the C code generated by

IR-to-C converter is 24785 lines, it is almost 5 times of

the source code. The generated C code contains the

lowered C code than the original one because IR code

does not keep the original code structures. But it does

not affect the quality of final output code (assembly code)

because the converted C code is only used to evaluate

the correctness of each optimization techniques in the

compiler.

(Figure 9) The average code size of 20 small-scale projects

In (Figure 10), all the 20 comparison results of original

codes and incorrect optimized codes show that the

average accuracy ratio is 100%. But the comparison result

of the correct optimized code is not 100% such that three

of them didn’t get 100% similarity, since MeCC produced

unknown value memory state in these three cases. The

average correctness ratio is 85%. This result means our

approach can detect the incorrect optimized code

accurately, but ours reports inaccurate result for the

correct optimized code in a few case. We will take care

of it in our future work.

(Figure 10) Average correctness ratio of the IR optimization

error check system

5. Conclusion

In this paper, we describe a technique for automatically

proving compiler optimizations sound, meaning that their

transformations are always semantics-preserving. We

create an IR-to-C converter to translate IR to C code

before and after each compiler optimization phase,



114 정보처리학회논문지 A 제18-A권 제3호(2011. 6)

respectively, then input the two C codes generated by

IR-to-C converter to MeCC to detect whether they keep

semantic equivalence or not. Finally, for increasing the

reliability of the whole system, we present some

techniques which comprise how to generate C codes in

IR-to-C transformation phase and how to send the

optimization information to MeCC to avoid the occurrence

of these unexpected problems. Through experiment

results, the accuracy of the whole system is about 92.5%.

Although we have increased some accuracy of the

system, it is still insufficient because of the occurrence of

the unknown values. In the future, we will modify MeCC

to reduce the occurrence of the unknown value memory

states and improve the accuracy of the static analysis.

Reference

[1] A. Pnueli, M. Siegel, and E. Singerman, Translation validation,

In Tools and Algorithms for Construction and Analysis of

Systems, TACAS ’98, volume 1384 of Lecture Notes in

Computer Science, pages151–166, 1998.

[2] George C. Necula, Translation validation for an optimizing

compiler, In Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation,

pages 83–95, Vancouver, Canada, June, 2000.

[3] Martin Rinard, Credible compilation, Technical Report

MIT-LCS-TR-776, Massachusetts Institute of Technology,

March, 1999.

[4] J. Guttman, J. Ramsdell, and M. Wand, VLISP: a verified

implementation of Scheme, Lisp and Symbolic Compucation,

8(1-2):33–110, 1995.

[5] F. Lockwood Morris, Advice on structuring compilers and

proving them correct, In Conference Record of the 1st ACM

SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, Boston MA, January, 1973.

[6] Jens Knoop, Oliver R¨uthing, and Bernhard Steffen, Optimal

code motion: Theory and practice. ACM Transactions on

Programming Languages and Systems, 16(4):1117–1155,

July, 1994.

[7] M. Kauffmann and R.S. Boyer, The Boyer-Moore theorem

prover and its interactive enhancement, Computers and

Mathematics with Applications, 29(2):27–62, 1995.

[8] Bernhard Steffen, Generating dataflow analysis algorithms for

model specifications, Science of Computer Programming,

21(2):115–139, 1993.

[9] Heejung Kim, Yungbum Jung, Sunghun Kim, Kwangkeun Yi,

MeCC: Memory Comparison-based Clone Detector, ICSE

2011: The 33rd International Conference on Software

Engineering, Waikiki, Honolulu, Hawaii, May 21 ~ 28, 2011.

[10] M. Ahn, SoarGen: A user retargetable compiler in the design

of embedded systems, Ph.D thesis, Seoul National University,

2009.

정 지 문

e-mail : jmjung@optimizer.snu.ac.kr

2007년 중국 Jilin University 소프트웨어

공학과(학사)

2011년 서울대학교 전기컴퓨터공학부

(석사)

관심분야 : Embedded systems, optimizing

compiler, software optimizations

and computer architecture.

윤 종 희

e-mail : jhyoun@gwnu.ac.kr

2003년 경북대학교 전자전기공학부(학사)

2011년 서울대학교 전기컴퓨터공학부

(박사)

2011년∼현 재 강릉원주대학교 컴퓨터

공학과 강의전담교수

관심분야 : Embedded systems, Optimizing compiler, software

optimizations and computer architecture, MPSoC.

이 종 원

e-mail : jwlee@optimizer.snu.ac.kr

2007년 서울대학교 전기공학부(학사)

2007년∼현 재 서울대학교 전기컴퓨터

공학부 박사과정

관심분야 : embedded systems, optimizing

compiler, software optimizations

and computer architecture.

백 윤 흥

e-mail : ypaek@snu.ac.kr

1988년 서울대학교 컴퓨터공학과(학사)

1990년 서울대학교 컴퓨터공학과(석사)

1997년 UIUC 전산과(박사)

1997년∼1999년 NJIT 조교수

1999년∼2003년 KAIST 전자전산학과 부교수

2003년∼현 재 서울대학교 전기컴퓨터공학부 교수

관심분야 :임베디드 소프트웨어, 임베디스 시스템 개발도구,

컴파일러, MPSoC


