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Improving Efficiency of Minimum Dominating Set Problem using
Simulated Annealing Algorithms

Tae Eui Jeong'

ABSTRACT

The minimum dominating set problem of a graph G is to find a smallest possible dominating set. The minimum dominating set
problem is a well-known NP-complete problem such that it cannot be solved in polynomial time. Heuristic or approximation algorithm,

however, will perform well in certain area of application. In this paper, we suggest three different simulated annealing algorithms and

experimentally show better efficiency improvement by applying these algorithms to the graph instances developed by DIMACS.
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1. Introduction

Let ¢ = (V, E) be a simple undirected graph with
vertex set V' = {1, ., n} and edge set £ < Vx V. Let n
and m denote the number of vertices and edges,
respectively. A dominating set of G = (V, E) is a subset
D of V such that every vertex not in D is adjacent to at
least one vertex of [). A dominating set with minimum
cardinality is called the Minimum Dominating Set (MDS).
Minimum Dominating Set Problem (MDSP) of a graph &

is the problem to find the minimum dominating set of G.
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The size of the MDS of G is called the domination
number of G.

MDSP is a well-known NP-complete problem [2, 7].
The problem apparently cannot be solved in polynomial
time. Because of such impracticality of developing an
efficient algorithm for MDSP, it is much focused on the
development of 5, 6]
algorithms [3, 4] rather than the correct or optimal

approximation or heuristic
answer for some or all instances of the problem. In
practice, it 1S possible that an approximation or heuristic
algorithm will perform well experimentally, even if only
for certain types of instances. MDSP, as an optimization
problem, has numerous areas of application in the field of
networks and communications. Abhay [3] suggested a

greedy heuristic algorithm for MDSP, and Sanchis [4]
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recently suggested a randomized greedy algorithm for
MDSP.

Since Kirkpatrick [8] first introduced the Simulated
Annealing algorithms (SA) in 1983, the simulated
techniques have been widely used for solving many
combinatorial optimization problems. SA is very similar to
the conventional iterative search algorithm with one major
difference: SA allows permutations to escape from the
local optimum in a controlled manner.

In this paper, we suggest three different simulated
annealing algorithms called SA-random, SA-order, and
SA-degree for MDSP. These algorithms differ in the
sense that, while the first two algorithms are based on
the randomness only, the third algorithm imposes suitable
heuristic knowledge of MDSP. We also compare the
performance of the algorithms by applying them to the
graph instances developed by DIMACS.

The rest of the paper is organized as follows. In
section 2, we first briefly introduce general structure of
simulated annealing algorithm and explain the detail
schemes of our three algorithms. Section 3 contains the
experimental results. Finally, chapter 4 contains some
conclusions.

2. Simulated annealing algorithms for the mini-
mum dominating set

In this paper, we consider simple undirected graphs
only. For notions and notations on simulated annealing
algorithms and graph theory not explained here, please
refer to [9] and [1], respectively. For a graph G = (V,
E), an ordering of V'is a bijection B{1, 2, ., 7} & V,

where n = |VI. We denote M) be the vertices adjacent
to vin G

For a graph G = (V, E), a solution is a 0-1 vector X
= (X, %, .., %) of length n, where each x is either 0 or
1. Let the subscript 7 of x represents the corresponding
vertex of x in X and denote Dx = { /| x = 1 }. Note
that Dk is a subset of V. For example, if n = 6 and X =
(1, 0,1, 0, 1, 1) then Dx = {1, 3, 5, 6}. Therefore, in
this paper, we use the two notations X and Dx
interchangeably.

If Dx is a dominating set of G, then we say that X is

n
a fasible solution. Also let fX) = 51 Xibe the fitness

finction of a solution X. Then, MDSP is to find the
solution X with minimum #X) among all possible feasible
solutions.

SA is an iterative procedure that continuously updates
one candidate solution to a new solution until a
termination condition is met. Updating a solution is
usually called move. Figure 2.1 shows the general
structure of the proposed simulated annealing algorithms.
It first generates an initial solution, which is a
dominating set of a given graph, and continuously
updates the current solution according to the move
function. Let X be the current solution and Y be the
solution generated by move function. Then, in line 10 of
the following algorithm, if #X) > AY), then the function
Accept_Solution() returns true. If AX) < AY), then

-AGain
Accept_Solution() returns true if £ < e T |, where F is

a real random number in (0, 1). In all other cases, it

returns false.

New_Solution = Move(Current_Solution);

AGain = fCurrent_Solution) - £New_Solution);

If Accept_Solution(AGain, 7) then
Current_Solution = New_Solution;
accept = True;

,I;top -1

1 Begin

2 T=1Ty

3 Y;top = 7‘5!’

4 Current_Solution = Generation of a initial solution;
5 While 7o > 0 do

6 accept = False;

7 For /=1 to M do

8

9

10

11

12

13 If accept then
14 Etop =
15 Else

16 Y;top =
17 T=Tx*«

18 End

(Figure 1) General structure of the proposed SAs
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Based on the algorithm shown in Fig. 1, our proposed
three SAs differ only in line 4 and 8, i.e., the generation
of initial solutions and move operations. The following
three subsections contain the details of the three proposed
SAs for MDSP.

2.1 SA-random

The mechanism of SA-random is based on the
randomness. The initial solution X is generated randomly
and forced to be a feasible solution by adding some
vertices to X. The move operation is also performed in
random fashion. We simply toggle the values of three
randomly chosen bits. The following steps show the
details of generating initial solution X = (x, %, ..., X):
(Step 1) Randomly select some x's and set them to 1

and set all others to 0.

(Step 1) If X is not feasible then we randomly select xi
which has value 0 and set x = 1. Repeat Step 1
until X" becomes feasible.

For a current solution X = (x, %, .., %) the following
two steps show the details of the move operation for
SA-random:

(Step 1) Randomly choose three x's.

(Step 2) For each selected x apply x + 1 (mod 2).

2.2 SA-order

Let S be a vector of length n whose elements are the
permutation of integers in the range of [1..z]. Then S can
be treated as a random ordering of the vertices of G. We
visit the vertices of (G according to S and build a
dominating set in greedy manner. For the move operation
we choose some subsequence of S and reverse the order
of that subsequence. The following two algorithms
greedy-order and reverse are used as initialization and
move operation, respectively.

Algorithm: greedy-order(G, S

begin
Dy =
for 7/=1to ndo
v =91l
if ve Gand (Mw N Dx = &) then
Dx = Dx U {v};
delete v and Mw);
end

(Figure 2) Algorithm greedy-order

Algorithm: reverse(G, S X)

begin
Let m and m be the two unique integer values
chosen randomly in the range of [1..z];
Assume that p1 < p» and Let S = S

for 7= 0to p» - pdo
Slpl +1 =902 - i

it}

S=9;
end
(Figure 3) Algorithm reverse

2.3 SA-degree

Unlike the SA-order, which chooses the vertices in
random manner, we impose some criteria when choose
the next vertex to be included in the minimum
dominating set. If a vertex has larger degree then it
covers more vertices than the vertice with small degree.
Therefore it is quite reasonable to consider the vertice
with larger degree first before considering the vertice
with small degree when constructing a minimum
dominating set. SA-degree uses this idea for constructing
initial feasible solution and its detail is shown in Figure
2.4. Note that the algorithm greedy-maximal is also used
for move operation for SA-degree for maximum
perturbation of the solutions.

Algorithm: greedy-maximal((&)

begin

1 Dx = &

2 while G # & do

3 let W be the set of vertices with
maximum degree in G,

4 Randomly choose a vertex v from W

5 Dx =Dx U {»}

6 delete v and Mv) from G

end

(Figure 4) Algorithm greedy-maximal

3. Experiments

Since there is no published benchmark graphs for
MDSP, in order to measure the performance of our
proposed three algorithms we run these algorithms on the
41 graph instances published by DIMACS[10], which
originally developed for the problems of maximum
independent set and minimum coloring. In all tests we
used the following parameters: 7" = 1000.0, &« = 098, 7¢ =
10, and M = 40. Our experiments were run on a
computer with a 2.33 GHz with 2 GB memory.

Table 1 shows the results of executing each algorithm
ten times. For each algorithm the first three columns
contains the result of best, worst, and average sizes of
the dominating set for the corresponding graph among 10
executions of the algorithm. The fourth column shows the
average execution time in seconds. For each algorithm 5,
w, and ave represent the best, worst, and average
dominating size. The symbol ¢ represents the average

running time.
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(Table 1> Test Results

Three SA algorithms for MDSP

Graphs n m A 8(G) SA-random SA-order SA-degree

b ‘ w ave t b w ave t b w ave t
Frb30-15-1 | 450 | 17827 [1z2| 42 |15 020 176 | 79 {14117 | 161 | 11 [12112] 12 | 46
Frb30-152 | 450 | 17874 |116| 45 [ 181 24 1 199 1 79 |14 117 [ 160 | 11 [121 121 12 | 41
Frb30-15-3 | 450 | 17809 [122] 49 |17 021 | 187 | 79 |15 0 17 | 163 | 11 [12) 12| 12 | 42
Frb30-15-4 | 450 | 17881 |10 4 [ 16123 ] 195 [ 79 [157 17 161 | 11 [} 11 ] 4l
Frb30-15-5 | 450 | 17794 [128] 46 [ 18123 1 196 1 79 [161 181 166 | 11 {121 121 12 | 46
Frb35-17-1 | 595 | 278%6 [132] 50 [ 19126 | 222 | 140 [ 18121 | 196 | 17 [141 14| 14 | 85
Frb35-17-2 | 595 | 27847 [134] 53 |18 27 | 230 | 132 [ 18120 | 189 | 17 [ 14| 14 | 82
Frb35-17-3 | 595 | 27931 [165] 45 [ 20025 | 220 | 37 [ 181 19| 188 | 17 {14} 14 ] 14 | 83
Frb3s-17-4 | 59% | 2742 [150] 34 [21 125 | 284 | 139 [1901 21 | 198 | 17 [141 14| 14 | 95
Frb35-175 | 595 | 28143 [134] 44 [ 22026 | 237 [ 140 [ 181 20 | 189 | 17 [141 14| 14 | 82
Frb40-19-1 | 760 | 41314 [178] 56 |25 {31 | 288 | 220 |22} 24| 231 | 23 [16]16 [ 16 | 153
Frbd0-19-2 | 760 | 41263 [171] 57 [24 1 33 | 286 | 221 [21 1 24 | 22 | 24 [16! 17 | 161 | 181
Frba0-19-3 | 760 | 41005 [150] 57 [ 251 20 [ 273 [ 222 [201 23 | 221 | 23 [161 16| 16 | 173
Frb40-19-4 | 760 | 41605 [164] 67 [ 25130 | 282 | 223 [20) 23 | 218 | 23 [16] 16| 16 | 158
Frb40-19-5 | 760 | 41609 [174] 63 |25 {32 | 281 223 |21} 22 | 217 | 23 [15] 15[ 15 | 179
Frbd5-21-1 | 945 | 59186 [188] 68 [ 290 38 | 320 [ 344 [231 26 | 249 | 32 [181 18] 18 | 25
Frbas21-2 | 945 | 58624 [191] 74 [ 27135 1 309 I'339 [ 241261 254 | 32 [181 181 18 | 29
Frbd521-3 | 945 | 5845 [205| 72 |27 130 | 326 | 342 [ 220 26 | 247 | 32 {17} 17| 17 | 270
Frbas21-4 | 945 | 58549 [212] 69 |28 136 | 319 | 346 [24 ] 27 | 253 | 31 [18] 18] 18 | 27
Frba5-215 | 945 | 58579 [180] 70 [27 0321 300 I'341 [220 27 1 250 1 32 [181 18] 18 | 279
Frb50-23-1 | 1150 | 80072 [208| 84 [ 321 40 | 350 | 495 [ 27120 | 281 | 42 [191 19 [ 19 | 464
Frb50-23-2 | 1150 | 80851 [227] 75 |31} 47 | 370 | 498 | 27130 | 281 | 42 [19] 20 | 196 | 523
Frb50-23-3 | 1150 | 81068 [204| 71 [ 341 43 | 365 I 498 [ 25120 | 278 | 42 [20 ] 20 [ 20 | 408
Frb50-23-4 | 1150 | 80258 [208] 78 |32 142 | 358 | 494 | 27130 | 279 | 42 [191 19 | 19 | 455
Frb50-23-5 | 1150 | 80035 [227] 69 | 311 42 | 366 | 497 [ 26120 | 275 | 42 [191 19 ] 19 | 425
Frb53-24-1 | 1272 | 94227 [232| 8 | 351 45 | 390 | 602 [ 28 1 31 | 299 | 48 [21 )21 ] 21 | 501
Frb53-24-2 | 1272 | 94280 [232] 89 |33 ! 44| 300 j 602 | 27131 | 204 | 48 [21 ]2 [ 21 | 5l6
Frb53-24-3 | 1272 | 94127 [234] 88 [ 38 146 | 406 | 603 [ 28133 | 206 | 49 {20120 [ 20 | 493
Frb53-24-4 | 1272 | 94308 |226| & [ 341 41 | 364 1507 [ 28131 | 204 | 48 [201 20 | 20 | 487
Frb53-24-5 | 1272 | 94227 [206] 72 [ 33} 42| 369 602 [ 28130 | 200 | 48 {20} 21 [ 21 | 513
Frb56-25-1 | 1400 | 100676 [237] 88 [ 371 45 | 415 | 728 [310 34 | 323 | 56 [20 2| 2 | 66
Frb56-25-2 | 1400 | 100401 [237] 72 [ 34145 1 306 I 723|301 33 137 156 (212 2 167
Frb56-25-3 | 1400 | 109379 |239| 98 | 361 49 | 418 | 720 [ 31133 | 319 | 55 |21 22 | 217 | 766
Frb56-25-4 | 1400 | 110038 [241] 92 |37 1 43 | 402 | 729 [ 20133 | 314 | 57 [2] 2] 2 | 639
Frb56-25-5 | 1400 | 100601 [241] 88 [ 37 145 | 409 I 724 [ 30134 | 315 | 55 {20121 ] 21 1619
Frb59-26-1 | 1534 | 126555 [277] 94 |40 150 | 435 | 863 [ 32136 | 384 | 63 [ 212 | 2 | 848
Frb59-26-2 | 1534 | 126163 [265] 100 [ 37 | 46 | 423 | 863 [ 31135 | 35 | 64 |21 2| 2 | 767
Frb59-26-3 | 1534 | 126082 [258| 78 | 38 | 49 | 432 | 871 [ 32| 34 | 332 | 67 [23 | 23 23 | 763
Frb59-26-4 | 1534 | 127011 [274| 98 |40 155 | 448 | 874 [ 31135 | 330 | 63 |21 2| 2 | 973
Frb59-26-5 | 1534 | 125082 [238] 81 [ 38153 | 462 | 863 [ 32134 | 327 | 64 [231 23| 23 | 81
Frbl00-40 | 4000 | 572774 [446| 135 | 73 1106 | 836 | 609.1 | 57 | 60 | 584 | 253 [ 39} 39 | 39 | 7604
pDSjes0.l | 250 | 3218 38| 13 |20 26 ] 239 | 21 |21 28| 244 | 07 |16 16| 16 | 18
DsJc5001 | 500 | 12458 [68| 34 [ 30136 | 325 [ 81 [ 2133 [ 306 [ 17 [20120] 20 | 81
DSJC1000.1 | 1000 | 49620 [127] 68 [ 37 146 | 410 341 [ 34139 | 370 | 41 {23123 ] 23 | 395
DSJR500.L | 500 | 3555 |25 4 |31 62 ] 553 | 66 | 471 54 | 520 | 23 |42 4 | 431 | 179
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Table 1 shows that the performance of SA-degree is
much better than those of the other two algorithms. This
is due to the fact that unlike the other two algorithms,
SA-degree does not totally depend on randomness.
SA-degree uses the heuristic of larger degrees of the
graphs. Comparing the best and worst cases of each
algorithm, it can be easily seen that the performance of
SA-degree are very steady. For the 29 test graphs only 4
graphs show the different best and worst size of
dominating sets. These results show that, rather than
based on total randomness, if we add some heuristic
knowledge of the problem, then the performance of the
simulated annealing algorithm can be greatly improved.

Figure 5 shows the convergence ratios of the three
algorithms for the graphs Frb30-15-1 and DSJC250.1,
respectively. For the graph Frb30-15-1, when the number
of iterations closes to 400 the fitness values are start to
converge. However, from the Fig. 5(e), it is easy to see
that SA-degree shows steadier performance compare to
the other two algorithms. Similar observations can be
obtained from the graph DSJC250.1.

4. Conclusion
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In this work, we showed that simulated annealing can
be used to efficiently approximate the size of the
minimum dominating set of graphs. For these purposes,
we proposed three simulated annealing algorithms and
algorithms by
applying them to the widely known graph instances. The

measured the performance of these

results of the experiments clearly show that, by adding
some suitable heuristic knowledge of the problem, it may
improve the quality of the solutions when we search the

solution space.
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