DOI QR코드

DOI QR Code

Liposome/Tat Complex for Facilitating Genistein Uptake into B16 Melanoma Cells

  • Park, Young-Mi (Division of Pharmaceutical Science, College of Pharmacy, Chung-Ang University) ;
  • Kang, Myung-Joo (Division of Pharmaceutical Science, College of Pharmacy, Chung-Ang University) ;
  • Moon, Ki-Young (Division of Pharmaceutical Science, College of Pharmacy, Chung-Ang University) ;
  • Park, Sang-Han (Division of Pharmaceutical Science, College of Pharmacy, Chung-Ang University) ;
  • Kang, Mean-Hyung (Division of Pharmaceutical Science, College of Pharmacy, Chung-Ang University) ;
  • Choi, Young-Wook (Division of Pharmaceutical Science, College of Pharmacy, Chung-Ang University)
  • Received : 2011.03.22
  • Accepted : 2011.07.01
  • Published : 2011.08.20

Abstract

Genistein (GT), a major isoflavone found in soybeans, has a potent antioxidant effect that protects the skin from UV-induced damages and malignant melanoma. In order to enhance the cellular uptake of GT, liposome/Tat complexes were prepared by an electrostatic interaction of anionic liposome (DMPC/DCP, 9:1 in molar ratio) with Tat peptide (0.02 to 0.08 mole), one of the well-known cell penetrating peptide (CPP). As the amount of Tat increased, the size increased but the zeta potential decreased. In vitro release study with dialysis membrane elicited GT release from liposomal preparations in a controlled manner. The addition of Tat increased GT release, especially for the initial period. In the cellular uptake study by incubating B16 melanoma cells with various liposomal preparations containing GT, B16 melanoma cells demonstrated a time-dependent increase of drug accumulation. Compared to the aqueous GT suspension, intracellular uptake was substantially enhanced by anionic liposomal formulation and further increased by the complex formulation. Therefore, liposome/ Tat complex might be a good candidate for facilitating intracellular drug delivery.

Keywords

References

  1. Barnes, S., Grubbs, C., Setchell, K.D., Carlson, J., 1990. Soybeans inhibit mammary tumors in models of breast cancer. Prog. Clin. Biol. Res. 239-253.
  2. Booth, C., Hargreaves, D.F., Hadfield, J.A., McGown, A.T., Potten, C.S., 1999. Isoflavones inhibit intestinal epithelial cell proliferation and induce apoptosis in vitro. Br. J. Cancer 80, 1550-1557. https://doi.org/10.1038/sj.bjc.6690559
  3. Hyndman, L., Lemoine, J.L., Huang, L., Porteous, D.J., Boyd, A.C., Nan, X., 2004. HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes. J. Control. Rel. 99, 435-444. https://doi.org/10.1016/j.jconrel.2004.07.023
  4. Ichihashi, M., Ahmed, N.U., Budiyanto, A., Wu, A., Bito, T.,Ueda, M., Osawa, T., 2000. Preventive effect of antioxidant on ultraviolet-induced skin cancer in mice. J. Dermatol. Sci. 23, S45-S50. https://doi.org/10.1016/S0923-1811(00)00083-9
  5. Kang, M.J., Eum, J.Y., Jeong, M.S., Choi, S.E., Park, S.H., Cho, H.I., Cho, C.S., Seo, S.J., Lee, M.W., Choi, Y.W., 2010. Facilitated skin permeation of oregonin by elastic liposomal formulations and suppression of atopic dermatitis in NC/Nga mice. Biol. Pharm. Bull. 33, 100-106. https://doi.org/10.1248/bpb.33.100
  6. Kwon, S.H., Kang M.J., Huh J.S., Ha, K.W., L, J.R., Lee, S.K., Lee, B.S., Han, I.H., Lee, M.S., Lee, M.W., Lee, J., Choi, Y.W., 2007. Comparison of oral bioavailability of genistein and genistin in rats. Int. J. Pharm. 337, 148-154. https://doi.org/10.1016/j.ijpharm.2006.12.046
  7. Lee, K.W., Lee, H.J., 2006. The roles of polyphenols in cancer chemoprevention. Biofactors 26, 105-121. https://doi.org/10.1002/biof.5520260202
  8. Marty, C., Meylan, C., Schott, H., Ballmer-Hofer, K., Schwendener, R.A., 2004. Enhanced heparan sulfate proteoglycanmediated uptake of cell-penetrating peptide-modified liposomes. Cell. Mol. Life Sci. 61, 1785-1794.
  9. Motlekar N., Khan, M.A., Youan, B-B.C., 2006. Preparation and characterization of genistein containing poly(ethylene glycol) microparticles. J. Appl. Polym. Sci. 101, 2070-2078. https://doi.org/10.1002/app.23827
  10. Rimbach, G., De Pascual-Teresa, S., Ewins, B.A., Matsugo, S., Uchida, Y., Minihane, A.M., Turner, R., VafeiAdou, K., Weinberg, P.D., 2003. Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica 33, 913-925. https://doi.org/10.1080/0049825031000150444
  11. Sander, C.S., Chang, H., Hamm, F., Elsner, P., Thiele, J.J., 2004. Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. Int. J. Dermatol. 43, 326-335. https://doi.org/10.1111/j.1365-4632.2004.02222.x
  12. Spinozzi, F., Pagliacci, M.C., Migliorati, G., Moraca, R., Grignani, F., Riccardi, C., Nicoletti, I., 1994. The Natural Tyrosine Kinase Inhibitor Genistein Produces Cell-Cycle Arrest and Apoptosis in Jurkat T-Leukemia Cells. Leuk. Res. 18, 431-439. https://doi.org/10.1016/0145-2126(94)90079-5
  13. Surh, Y.J., Chun, K.S., Cha, H.H., Han, S.S., Keum, Y.S., Park, K.K., Lee, S.S., 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480, 243-268. https://doi.org/10.1016/S0027-5107(01)00183-X
  14. Temsamani, J., Vidal, P., 2004. The use of cell-penetrating peptides for drug delivery. Drug Discovery Today 9, 1012-1019. https://doi.org/10.1016/S1359-6446(04)03279-9
  15. Torchilin, V.P., Rammohan, R., Weissig, V., Levchenko, T.S., 2001. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. U. S. A. 98, 8786-8791. https://doi.org/10.1073/pnas.151247498
  16. Vedavanam, K., Srijayanta, S., O'Reilly, J., Raman A., Wiseman, H., 1999. Antioxidant action and potential antidiabetic properties of an isoflavonoid-containing soyabean phytochemical extract (SPE). Phytother. Res. 13, 601-608. https://doi.org/10.1002/(SICI)1099-1573(199911)13:7<601::AID-PTR550>3.0.CO;2-O
  17. Wang, Y., Cao, J., Weng J.H., Zeng, S., 2005. Simultaneous determination of quercetin, kaempferol and isorhamnetin accumulated human beast cancer cells by high-performance liquid chromatography. J. Pharm. Biomed. Anal. 39, 328-333. https://doi.org/10.1016/j.jpba.2005.03.016
  18. Wei, H., Saladi, R., Lu, Y., Wang, Y., Palep, S.R., Moore, J., Phelps, R., Shyong, E., Lebwohl, M.G., 2003. Isoflavone genistein: Photoprotection and clinical implications in dermatology. J. Nutr. 133, 3811S-3819S.
  19. Zhou, J.R., Mukherjee, P., Gugger, E.T., Tanaka, T., Blackburn, G.L., Clinton, S.K., 1998. Inhibition of murine bladder tumorigenesis by soy isoflavones via alterations in the cell cycle, apoptosis, and angiogenesis. Cancer Res. 58, 5231-5238.