DOI QR코드

DOI QR Code

A Study on the Optimal Conditions of the Biogas Sorting by Using the Polysulfone Membrane

다공성 분리막을 이용한 최적의 Bio-gas 분리인자 도출

  • Received : 2011.05.09
  • Accepted : 2011.07.21
  • Published : 2011.08.31

Abstract

The objective of this research is to evaluate optimal conditions of permeability and selectivity on the polysulfone membrane for efficiency of separation of $CH_4$ by checking four factors which are temperature, pressure, gas compositions and gas flow rates. When higher pressure was applied at the input, lower efficiency of recovery of $CH_4$ and higher efficiency of separation of $CH_4$ were shown. It has the tendency to show lower efficiency of recovery of $CH_4$ and higher efficiency of separation of $CH_4$ at the output as higher temperature at input. The lower flow rates make higher efficiency of recovery of $CH_4$ and lower efficiency of separation of $CH_4$. Finally, over 90% efficiency for $CH_4$ separation and recovery conditions are temperature ($-5^{\circ}C$), pressure (8 bar), gas composition rate (6:4) ($CH_4:CO_2$) and gas flow rate ($5\ell$/min). These conditions make higher separation and recovery efficiency such as 90.1% and 92.1%, respectively.

Keywords

References

  1. 민병무, 2009, 연소 후 이산화탄소 포집기술 현황, 한국공업화학회지, 12(1), 15-29.
  2. 박우균, 정항배, 권순익, 채규정, 박노백, 2010,돈분 슬러리 성상에 따른 최적 바이오가스 회수, 한국환경농학회지, 29(2), 197-205. https://doi.org/10.5338/KJEA.2010.29.2.197
  3. 배우근, 이영만, 2009, 페놀화합물이 폐수처리 미생물의 성장 및 바이오가스 생산에 미치는 영향, 한국폐기물자원순환학회지, 26(2), 175-182.
  4. 송선호, 엄체윤, 허광범, 이남훈, 이채영, 2010, 유기성폐기물의 혐기성 소화가스 중에 함유된 실록산 농도의 특성, 한국폐기물자원순환학회지, 27(4), 348-355.
  5. 오민, 박준용, 노승효, 홍성욱, 2009, 이산화탄소 분리를 위한 Pd-Ag 분리막 공정의 CFD모사, 한국공업화학회, 20(1), 104-108.
  6. 이창근, 2009, 이산화탄소 포집기술 최신 개발 현황, 한국공업화학회지, 12(1), 30-42.
  7. 이택홍, 김재영, 장세훈, 이효석, 최익환, 2010, 바이오가스의 $CH_4,\;CO_2$의 분리방법 연구, 한국수소 및 신재생에너지학회논문집, 21(1), 72-79.
  8. Barbieri, G., Scura, F., Lentini, F., De Luca, G., Drioli, E., 2008, A novel model equation for the permeation of hydrogen in mixture with carbon monoxide through Pd-Ag membranes, Sep. Purif. Technol., 61(2), 217-224. https://doi.org/10.1016/j.seppur.2007.10.010
  9. Caravella, A., Barbieri, G., Drioli, E., 2008, Modelling and simulation of hydrogen permeation through supported Pd-alloy membranes with a multicomponent approach, Chem. Eng. Sci., 63(8), 2149-2160. https://doi.org/10.1016/j.ces.2008.01.009
  10. Li, N. N., Ho, W. S. W., Fane, A. G., Matsuura, T., 2008, Advanced membrane technology and applications, John Wiley & Sons, Inc, New Jersey.
  11. Rifkin, J., 2002, The hydrogen economy, Wiley & Sone, New York.
  12. Shu, J., Grandjean, B. P. A., van Neste, A., Kaliaguine, S., Can, J., 1991, Catalytic palladium-based membrane reactors, Chem. Eng. Sci., 69, 1036.
  13. Spillman, R. W., 1989, Economics of gas separation membranes, Chem. Eng. Sci., 85, 41-62.
  14. Srinivasan, R., Auvil, S. R., Burban, P. M., 1994, Elucidation the mechanism(s) of gas transport in poly[1-(trimethylsilyl)-1-propyne](PTMSP) membranes, J. Membrane Sci., 86(1-2), 67-86. https://doi.org/10.1016/0376-7388(93)E0128-7
  15. Uemiya, S., Matsuda, T., Kikuchi, E., 1991, Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics, J. Membrane Sci., 56(3), 315-325. https://doi.org/10.1016/S0376-7388(00)83041-0
  16. Ward, T. L., Dao, T., 1999, Model of hydrogen permeation behavior in palladium membranes, J. Membrane Sci., 153(2), 211-231. https://doi.org/10.1016/S0376-7388(98)00256-7