DOI QR코드

DOI QR Code

Automated Surgical Planning System for Spinal Fusion Surgery with Three-Dimensional Pedicle Model

척추 융합 수술을 위한 삼차원 척추경 모델을 이용한 자동 수술 계획 시스템

  • 이종원 (포항공과대학교 대학원, 기계공학과) ;
  • 김성민 (한양대학교 생체의공학과) ;
  • 김영수 (한양대학교 의과대학 신경외과) ;
  • 정완균 (포항공과대학교 대학원, 기계공학과)
  • Received : 2011.04.20
  • Accepted : 2011.06.08
  • Published : 2011.08.01

Abstract

High precision of planning in the preoperative phase can contribute to increase operational safety during computer-aided spinal fusion surgery, which requires extreme caution on the part of the surgeon, due to the complexity and delicacy of the procedure. In this paper, an advanced preoperative planning framework for spinal fusion is presented. The framework is based on spinal pedicle data obtained from CT (Computed Tomography) images, and provides optimal insertion trajectories and pedicle screw sizes. The proposed approach begins with safety margin estimation for each potential insertion trajectory that passes through the pedicle volume, followed by procedures to collect a set of insertion trajectories that satisfy operation safety objectives. The radius of a pedicle screw was chosen as 70% of the pedicle radius. This framework has been tested on 68 spinal pedicles of 8 patients requiring spinal fusion. It was successfully applied, resulting in an average success rate of 100% and a final safety margin of $2.44{\pm}0.51mm$.

Keywords

References

  1. S. E. Heim, "Transpedicle instrumentation in the degenerative spine," Clinical Orthopaedics and Related Research, pp. 97-110, 1997.
  2. Y. R. Rampersaud, D. A. Simon, and K. T. Foley, "Accuracy requirements for image-guided spinal pedicle screw placement," Spine, vol. 26, pp. 352-359, 2001. https://doi.org/10.1097/00007632-200102150-00010
  3. W. H. Castro, H. Halm, J. Jerosch, J. Malms, J. Steinbeck, and S. Blasius, "Accuracy of pedicle screw placement in lumbar vertebrae," Spine, vol. 21, pp. 1320-1324, 1996. https://doi.org/10.1097/00007632-199606010-00008
  4. C. J. Schulze, E. Munzinger, and U. Weber, "Clinical relevance of accuracy of pedicle screw placement. A computed tomographic-supported analysis," Spine, vol. 23, pp. 2215-2220, 1998. https://doi.org/10.1097/00007632-199810150-00014
  5. G. Boschetti, G. Rosati, and A. Rossi, "A haptic system for robotic assisted spine surgery," Proc. of IEEE Conference on Control Applications, Toronto, Canada, pp. 19-24, 2005. https://doi.org/10.1109/CCA.2005.1507094
  6. T. Ortmaier, H. Weiss, U. Hagn, M. Grebenstein, M. Nickl, A. Albu-Schaffer, C. Ott, S. Jorg, R. Konietschke, and L. Le-Tien, "A hands-on-robot for accurate placement of pedicle screws," Proc. of IEEE International Conference on Robotics and Automation, Orlando, USA, pp. 4179-4186, 2006. https://doi.org/10.1109/ROBOT.2006.1642345
  7. J. J. Santos-Munne, M. A. Peshkin, S. Mirkovic, S. D. Stulberg, and T. C. Kienzle III, "A stereotactic/robotic system for pedicle screw placement," Proceedings of Medicine Meets Virtual Reality III, 1995.
  8. K. Cleary, M. Clifford, D. Stoianovici, M. Freedman, S. K. Mun, and V. Watson, "Technology improvements for image-guided and minimally invasive spine procedures," IEEE Trans. Information Technology in Biomedicine, vol. 6, pp. 249-261, 2002. https://doi.org/10.1109/TITB.2002.806089
  9. G. B. Chung, S. Kim, S. G. Lee, B. J. Yi, W. Kim, S. M. Oh, Y. S. Kim, B. R. So, J. I. Park, and S. H. Oh, "An image-guided robotic surgery system for spinal fusion," International Journal of Control Automation and Systems, vol. 4, pp. 30-41, 2006.
  10. S. Kim, J. Chung, B. J. Yi, and Y. S. Kim, "An assistive image-guided surgical robot system using O-arm fluoroscopy for pedicle screw insertion: preliminary and cadaveric study," Neurosurgery, vol. 67, pp. 1757-1767, 2010. https://doi.org/10.1227/NEU.0b013e3181fa7e42
  11. K. Kim, J. Lee, W. K. Chung, S. Choi, Y. S. Kim, and I. H. Suh, "A noble bilateral teleoperation system for human guided spinal fusion," Proc. of IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 940-946, 2007. https://doi.org/10.1109/ROBOT.2007.363106
  12. J. Lee, K. Kim, W. K. Chung, S. Choi, and Y. S. Kim, "Humanguided surgical robot system for spinal fusion surgery: CoRASS," Proc. of IEEE International Conference on Robotics and Automation, Pasadena, USA, pp. 3881-3887, 2008. https://doi.org/10.1109/ROBOT.2008.4543807
  13. J. Lee, I. Hwang, K. Kim, S. Choi, W. K. Chung, and Y. S. Kim, "Cooperative robotic assistant with drill-by-wire end-effector for spinal fusion surgery," Industrial Robot: An International Journal, vol. 36, pp. 60-72, 2009. https://doi.org/10.1108/01439910910924684
  14. D. Togawa, M. M. Kayanja, M. K. Reinhardt, M. Shoham, A. Balter, A. Friedlander, N. Knoller, E. C. Benzel, and I. H. Lieberman, "Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part 2-- Evaluation of system accuracy," Neurosurgery, vol. 60, pp. 129-139, 2007.
  15. R. Wicker and B. Tedla, "Automatic determination of pedicle screw size, length, and trajectory from patient data," Proc. of IEEE Engineering Medicine Biology Society, San Francisco, USA, pp. 1487-1490, 2004. https://doi.org/10.1109/IEMBS.2004.1403457
  16. J. Xu, O. Chutatape, and P. Chew, "Automated optic disk boundary detection by modified active contour model," IEEE Transactions on Biomedical Engineering, vol. 54, Issue 3, pp. 473-482, 2007. https://doi.org/10.1109/TBME.2006.888831
  17. OTIS Biotech website. [Online]. www.otisbiotech.com
  18. G. R. Misenhimer, R. D. Peek, L. L. Wiltse, S. L. Rothman, and E. H. Widell, "Anatomic analysis of pedicle cortical and cancellous diameter as related to screw size," Spine, vol. 14, pp. 367-372, 1989. https://doi.org/10.1097/00007632-198904000-00004
  19. J. Lee, S. Kim, Y. S. Kim, and W. K. Chung, "Automated segmentation of the lumbar pedicle in CT images for spinal fusion surgery," IEEE Transactions on Biomedical Engineering, vol. 58, no. 7, pp. 2051-2063, 2011. https://doi.org/10.1109/TBME.2011.2135351
  20. D. Reisfeld, H. Wolfson, and Y. Yeshurun, "Context-free attentional operators: the generalized symmetry transform," International Journal of Computer Vision, vol. 14, no. 2, pp. 119-130, 1995. https://doi.org/10.1007/BF01418978