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피드포워드와 비피드포워드 비선형성이 

혼재된 비선형 시스템의 적응 제어 
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Abstract: We propose a switching-based adaptive state feedback controller for a class of nonlinear systems that have uncertain 

nonlinearity. The base of the proposed conditions on the nonlinearity is the feedforward form, then it is extended via a nonlinear 

function containing all the states and the control input. As a result, more generalized systems containing feedforward and 

nonfeedforward terms are allowed as long as the ratio condition of the nonlinear function is satisfied. Moreover, the information on 

the growth rate of nonlinearity is not required a priori in our control scheme. 
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I. INTRODUCTION 

There have been various control results on the 

stabilization/regulation problems of the feedforward systems and 

many related results in either state or output feedback form still 

can be found in very recent years [1,4,6-10,13-16]. However, in 

most of these results, the considered systems and control methods 

are naturally limited to a class of feedforward systems only. Thus, 

if the systems contain some additional ‘non-feedforward’ terms, 

most of the existing results become non-applicable. Notably, in 

[7], the authors developed a dynamic-gain state feedback 

controller which allows some non-feedforward and non-triangular 

terms in the nonlinearity. Thus, the system under consideration is 

extended into some class of systems that contain both feedforward 

and some non-feedforward terms. However, the method of [7] is 

applicable when the growth rates of nonlinear terms are known a 

priori. The purpose of this paper is to develop a regulating state 

feedback controller under the newly suggested conditions, which 

allow feedforward and some non-feedforward terms in the 

nonlinearity at once. Moreover, in our control scheme, we don’t 

need to know the growth rates of nonlinear terms. With the new 

conditions, some nonlinear terms, which cannot be covered by 

any of aforementioned existing results, will be allowed to consider 

the regulation problem. 

In this paper, we will consider the following class of nonlinear 

systems 

 ( , , )x Ax Bu t x uδ= + +�  (1) 

where n

x R∈  and u R∈  are the state and input of the system, 

respectively. The system matrices (A, B) is a Brunovsky canonical 

pair and the nonlinearity is an 1n×  vector such as ( , , )t x uδ =  

1
[ ( , , ), , ( , , )] .T

n
t x u t x uδ δ�  We assume that the origin is the only 

equilibrium point of the system (1) when u = 0. Define a positive 

definite matrix 
1

( ) diag[1, ( ,), , ( ) ]n

t
E t t

γ
γ γ

−

= � ( ) 0.tγ >  The 

mappings ( , , ) : ,n

i
t x u R R R Rδ × × → ,1, ,i n= �  are 1

C  and 

satisfy the following conditions. 

Assumption 1: There exist an unknown constant 0L ≥  and a 

nonnegative function ( , , ( ))x u tφ γ  such that 

 

( )( ) 1

2
1 2

2

1

( , , ) 1 ( , , ( ))

                          ( ) | | ( ) | |

t

n

i n

i

i

E t x u L x u t

t x t u

γ
δ φ γ

γ γ
−

− −

+

=

≤ +

 
× + 
 
∑

 (2) 

for all n

x R∈ and u R∈ . 

Assumption 2: There exist functions in the ( , , ( ))
i
x u tφ γ  

form of 

 ( , )

1

( , , ( )) | | | | ( )i j i i

n
a

i j

j

x u t x u t
µ ν

φ γ γ
=

=∏  (3) 

where ( , ) ,i j
a 0,

i
µ ≥  and 

i
ν is an any real number for 1, ,i = �  

,m  and 1, ,j n= �  such that  

 
1

( , , ( )) ( , , ( ))
m

i

i

x u t x u tφ γ φ γ
=

≤∑  (4) 

for all n

x R∈  and .u R∈  
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Using ( )) ,| | ( n i

i t
x t E x

γ
γ

−

≤  we have, for ,1, ,i m= �  

( , )

( , ) 1

( 1)

( )

1

.| | ( )

n

i j

i j j

j an
a

j t

j

x t E x
γ

γ
=

− −

=

∑
≤∏  From Assumption 2 and the 

above inequality, the following inequality can be directly derived 

by using ( ).t
E

γ
 

 
( ) | |

( , , ( ))
( )

i
i

i

r

t

i q

E x u
x u t

t

µ

γ

φ γ
γ

≤  (5) 

where ( , )

1

n

i i j

j

r a

=

=∑  and ( , )

1

( 1)
n

i i i j

j

q j aν

=

= − + −∑  for all 

n

x R∈  and .u R∈  

Assumption 3: The following inequality holds 

 ( 1) 1
i i i

n r q µ− − − <  (6) 

for all 1, , .i m= �  

The control problem is to adaptively regulate the system (1) 

under Assumptions 1 through 3. The proposed conditions are 

quite extensible since a large choices of ( , , ( ))x u tφ γ  are 

possible. Here, we provide some observations on how to apply the 

proposed conditions and how the non-feedforward terms are 

included throughout some specific examples for simplicity and 

clarity. 

Example A: (Application of the conditions) We let 3,n =  

2 3

1 2
( , , ) ,t x u x uδ =

2
( , , ,) 0t x uδ =  and 

3
( , , .) 0t x uδ =  By As-

sumption 1, we have 

2 3 1 2 2 1 2 2

2 2 2
| | ( ) | | | | ( ) | | (1 ( ) | | | | ) ( ) | |x u t x u t u t x u t uγ γ γ γ

− −

≤ ≤ +   

  (7) 

Thus, we obtain 1 2 2

2
( , , ( )) ( ) | .| | |x u t t x uφ γ γ −

=  Next, in 

applying Assumption 2, we give two ways and show that one is 

satisfactory while the other is not. (i) First, we simply choose 

1,m =  i.e., 
1

.( , , ( )) ( , , ( ))x u t x u tφ γ φ γ=  (ii) Second, we may 

further divide 1 4 1 4

2
( , , ( )) ( ) | | ( ) | |x u t t x t uφ γ γ γ− −

≤ +  so that 

1 4

1 2
( , , ( )) ( ) | |x u t t xφ γ γ −

=  and 1 4

2
( , , ( )) ( ) .| |x u t t uφ γ γ −

=  Now, 

with Assumption 3, it is easy to check that the choice of (i) is 

satisfied with 
1

2,r =
1

2,µ =  and 
1

3.q =  However, with the 

choice of (ii), the term 1 4

1 2
( , , ( )) ( ) | |x u t t xφ γ γ −

=  does not 

satisfy Assumption 3 because 
1

4,r =
1

0,µ =  and 
1

5.q =  Thus, 

it is important to obtain the proper functions ( , , ( ))
i
x u tφ γ  

because the same system can be viewed completely different 

depending on the selection. 

Example B: (Norm-bound feedforward form) We consider the 

example in [12] such that 3,n =
2

1 3 3
( , , ) s 4 ,int x u x xδ = +  

6

2
( , , ) ,t x u uδ =  and 

3
( , , .) 0t x uδ =  By assumption 1, it is easy 

to obtain that 

2 6

( ) 3 31

5

3 3                        

( , , ) | sin | 4 | | ( ) | |

4(1 | | | | )(| | ( ) | |)

t
E t x u x x t u

x u x t u

γ
δ γ

γ

≤ + +

≤ + + +

 (8) 

From (8), we set 
1 3
( , , ( )) | |x u t xφ γ =  and 5

2
( , , ( )) | |x u t uφ γ =  

for Assumption 2. Now, with Assumption 3, we have 
1

1,r =  

1
0,µ =

1
2,q =

2
0,r =

2
5µ =  and 

2
0,q =  i.e., all conditions 

are satisfied. In fact, this particular example can be easily 

generalized into the following feedforward form. For 

1, , 2i n= −�  

,1 ,2

2
( , , ) (1 | | | | )(| | | | | |)i i

p p

i i n i n
t x u L x u x x uδ

+
≤ + + + + +�  (9) 

with 1,1 1,2

1 1
( , , ) (1 | | | | ) | |n n

p p

n n n
t x u L x u uδ

− −

− −

≤ + +  and ( , ,
n
t xδ  

) 0.u =  Here, 
,1 ,2
, ,1

i i
p p ≥ 1, , 1.i n= −�  From Assumption 1 

and 2, we have ,1 ,2

1

( , , ( )) | | | |i i

n
p p

n

i

x u t x uφ γ
=

= +∑  and 
1
( , ,x uφ  

1,1( )) | .|
p

n
t xγ =  Then, we obtain 

1 1,1
,r p=

1
0µ =  and 

1
q =  

1,1
( 1) .n p−  Therefore, it is easy to check that the conditions in 

Assumption 3 are satisfied. Similarly, for ( , , ( )),
j
x u tφ γ j =  

2, ,2( ,1)n −�  we can check that this form satisfies Assumptions 

1 through 3 via simple algebraic manipulation. Some non-

feedforward terms are limitedly allowed because the feedforward 

form is expressed in terms of norm-bound. For example, let 

1 3 1 2
( , , ) s s ,in int x u x x xδ =  which violates the conditions used in 

[4,11-14] due to x1 and x2. However, in view of norm-bound, it is 

obvious that 
1 3
( , , ) | |t x u xδ ≤  which belongs to (9). Thus, this 

norm bound feedforward form itself has some extensions over the 

existing feedforward conditions. 

Example C: (Non-feedforward form) Let 3,n =
1
( , , )t x uδ =  

1

2 2 35

3 1 2 1
sin ,x x x u x+

1

43

2 2
( , , ) ,t x u x uδ =  and 4

3 1
( , , ) .t x u x uδ =  In 

this case, it clearly contains both feedforward and non-

feedforward terms. By Assumptions 1 and 2, we can obtain that 

1 3
( , , ) | ,( ) |x u t xφ γ =

1

1 2 25

2 1 2
( , , ( )) ( ) | | | | | ,|x u t t x x uφ γ γ −

=
3
( ,xφ

1

33

2
, ( )) | | ,| |u t x uγ =  and 3

4 1
.( , , ( )) ( ) | || |x u t t x uφ γ γ=  Then, 

Assumption 3 is satisfied by taking 
1

1,r =
1

0,µ =
1

2,q =  

2

11
,

5
r =

2
2,µ =

2
3,q =

3

1
,

3
r =

3
3,µ =

3

1
,

3
q =

4
1,r =

4
3,µ =  

and 
4

1.q = −  

 

II. ADAPTIVE FEEDBACK CONTROLLER 

To solve our control problem for any given initial conditions 

,(0) n

x R∈  we introduce an adaptive controller which can tune 

the gain parameter by using the suitably defined monitoring 

signals. 

On-line tuning feedback controller: 

 ( ( ))u K t xγ=  (10) 

where 
1

( ( )) [ / ( ) , , / ( )],n

n
K t k t k tγ γ γ= �  ( ) 0tγ >  is to be 

tuned according to the switching logic. 

Monitoring signals: 

 
( )

1

1

( )
( )

i i

i i

r
m

t

q n
i

E x
t

t

µ

γ

µ
θ

γ

+

+

=

=∑  (11) 
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2 ( )( ) ( )

k

t

t

t E x d
γ τ

θ τ τ= ∫  (12) 

for 
k

t t>  where ,
k
t 0,1,2 ,k = �  is the moment that switching 

occurs. 

Remark 1: Logic (11) is proposed for preventing the finite 

time escape phenomenon of controlled system with high-order 

nonlinearity. Logic (12) is presented for the regulation of the 

system. 

Initialization: 

• Set the positive constant 0 1c< <  such as ( 1)
i

c n r> −  

i i
q µ− −  for all .1, ,i m= �  

• Set positive constants 
0

1,S ≥ 1α >  and 
0

1γ ≥  such as 

0

0

0

(0)
i i

i i

r

c

q n

E x
µ

γ

µ
γ

γ

+

+
>  for all .1, ,i m= �  

• Set 0k =  at 
0

0.t =  

Switching logic: 

Step 1: Set ( )
k

tγ γ= . 

Step 2: If 
1
( ) c

k
t mθ γ≥  or 2

2
( ) ( )

kk k
t k E x t

γ
θ γ>  

→
1k k

S Sα
+
= ; 

→
1 1k k k

Sγ γ
+ +
= ; 

→
1k

t t
+
= ; 

→ 1k k= + ; (Switching)  

Go to Step 1; 

Else 

→ ( )
k

tγ γ= ; (No Switching) 

Go to Step 2; 

Here, we address some mathematical notations and setups for 

Theorem 1 and its proof. Let ( ( )) .( ( ))
K t

A A BK t
γ

γ= +  Then, we 

define (1)K K=  and (1).K K
A A=  If given that 

K
A  is 

Hurwitz, from [2], we can obtain a Lyapunov equation of 
1 2

( ( )) ( ( )) ( ( )) ( ( )) ( )( )T

K t K t K t K t t
A P P A t E

γ γ γ γ γ
γ

−

+ = −  with ( ( ))K t
P

γ
=  

( ) ( )t K t
E P E

γ γ
 from T

K K K K
A P P A I+ = −  where I  denotes an 

n n×  identity matrix. We note that the proposed controller (10) 

is equivalently expressed as ( )) .( n

t
u t KE x

γ
γ

−

=  

Now, we state the main result. 

Theorem 1: Under Assumptions 1 through 3, select K such that 

AK is Hurwitz. Then, the controller (10) with the switching logic 

asymptotically regulates the closed-loop system (1) for any given 

initial conditions .(0) n

x R∈  Also, ( )
ss

tγ γ→ < ∞  as .t →∞  

Proof: From (1) and (10), the closed-loop system is 

 ( ( )) ( , , )
K t

x A x t x u
γ

δ= +�  (13) 

where ( )tγ  is nondecreasing and ( ) 1tγ ≥  for all 0t ≥  

according to the switching logic. Thus, the system (13) does not 

suffer from any singularity problem. The vector field of (13) is C1 

with respect to its arguments. So, the system (13) satisfies a local 

Lipschitz condition in a neighborhood of the initial condition 

(0) .nx R∈  Moreover, it is certain that ( )tγ  exists and is finite 

as long as x  remains bounded. Thus, the solution of (13) exists 

and is unique on [0, )fT  for some (0, )fT ∈ ∞  [5,9]. Without 

loss of generality, we assume now on that [0, )fT  is the 

maximally extended interval of the solution of (13). 

The gain function ( )tγ  evolves as a piecewise constant func 

tion on [0, )ft T∈  and there are time-intervals :
k
t∆ =  

1
{ | ( , ] ,}

k k
t t t t

+
∈ 0,1,2 ,k = �  such that ( )tγ  remains as a 

constant value 
k

γ  for each time-interval .

k
t∆  Obviously, there 

are associated switching time denoted as tk , 0,1,2, ,k = �  i.e., 

switching occurs at t = tk. As a whole, the closed-loop system can 

be viewed as a switched system ( , , ( ,))
k

x f x u tγ=� 0,1,2 ,k = �  

and each subsystem ( , , )
k k

x f x u γ=�  is engaged for each time-

interval 
k
t∆  where ( )tγ  is replaced by 

k
γ  for each .

k
t∆  

Now, for each subsystem ( ) ( , , ,)
kK

x A x t x u
γ

δ= +�  we set a 

Lyapunov function ( )( )
k

T

k K
V x x P x

γ
=  where ( )k k kK K

P E P E
γ γ γ

=  

and ( ) ( )| .
k kt t

E E
γ γ γ γ=
=  Then, we have 

 
2 2

1 2
( )

k k
k

E x V x E x
γ γ

λ λ≤ ≤  (14) 

where 
1 min

( )
K
Pλ λ=  and 

2 max
),(

K
Pλ λ=  which are independent 

of .

k
γ  

Along the trajectory of each subsy stem, we have 

 

2
1

( )

2
1

1

( ) 2 ( , , )

         

2 ( , ,             )

k k

k

k k

T

k k K

k

K

V x E x x P t x u

E x

P E x E t x u

γ γ

γ

γ γ

γ δ

γ

δ

−

−

= − +

≤ −

+

�

 (15) 

The inequality of (15) is obtained by using ( ) ( )k k

T

K K
A P

γ γ
+  

1 2

( ) ( ) .

k k kK K k
P A E

γ γ γ
γ
−

= −  Regarding the last term 
1

( , , )
k

E t x u
γ
δ  

of (15), by Assumption 1, we have (recall that )
k

n

k
u KE x

γ
γ
−

=  

2

1

( , , ) (1 ) (1 ( , , )
k kk k

E t x u L n K x u E x
γ γ
δ γ φ γ−

≤ + +  (16) 

Using (15)-(16), for ,
k

t t∈∆  we have  

 ( )( )
2

2( ) 1 ( , , )
k

k k k k
V x x u E x

γ
γ γ σ φ γ−

≤ − − +�  (17) 

where 2 (1 .)
K

L n K Pσ = +  

From Assumption 2, using ,

k

n

k
u KE x

γ
γ
−

=  for ,
k

t t∈∆  we 

obtain  

 
1 1

( , , )

i i i
i

k k

i i i

r r
m m

k iq q n
i ik k

E x u E x

x u

µµ

γ γ

µ
φ γ ρ

γ γ

+

+

= =

≤ ≤∑ ∑  (18) 

where , 1 ., ,
i

i
K i m

µ

ρ = = �  

Note that, for each time interval, 
1

i i

k

i i

r
m

c

kq n
i k

E x

m

µ

γ

µ
γ

γ

+

+

=

≤∑  holds 

by the proposed switching rule. That is, the condition (2) becomes 

the linear growth condition for each time interval. Thus, there is 

no finite escape time for each time interval, which means overall 
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finite escape phenomenon does not occur with our switching rule 

under Assumptions 1 through 3. The remaining part is to show 

that (i) only a finite number of switching occurs, (ii) the system 

regulation is followed afterward. 

(I) Finite switching: We show that switching occurs only 

finitely. It is clear that 
k

γ  and 
k

S  are nondecreasing and 1c <  

from the switching logic and the initialization. Let k
* be the 

smallest number of switchings such that the following inequalities 

are satisfied 

 
* *

(1 ) 1c

k k
mγ σ ρ γ− + ≥  (19) 

 
*

2

1

r

c c

k
S

λ

λ

− 
≥  
 

 (20) 

 

1

2

* 2

1

k
λ

λ

 
≥  
 

 (21) 

where 
[1, ]
max{ },

i
i m

ρ ρ
∈

=

[1, ]

1
max{ }

2
,

i i
i m

r r µ
∈

= +  and 
[1, ]
ma ({x
i m

c n

∈

= −  

1) }.
i i i
r q µ− −  

By the switching logic, for 
*
,

k
t t∈∆  we obtain  

 
*

*

*

1

1

( )

i i

k

i i

r

m
c

q n k
i k

E x

t m

µ

γ

µ
θ γ

γ

+

+

=

= ≤∑  (22) 

Using (17)-(19), (22) and the continuity of ( ),x t  for 
*
,

k
t t∈∆  

we obtain 

 

1

2
2

* *

*
* *

1

2
2

* *

*
*

( )2

1

( )2

1

        

)

 

(

( ) 

k k

k k

k k

k

t t

k

t t

k

E x E x t e

E x t e

γ

γ γ

γ

γ

λ

λ

λ

λ

− +

−

− −

+

− −

 
≤  
 

 
=  
 

 (23) 

For 
*

1
,

k
t t

+

∈∆  similarly to (23), we have 

 

1

2
2

* *
1 1

*
* *

1 1

( )2

1
1

( ) k k

k k

t t

k
E x E x t e

γ

γ γ

λ

λ

−

+ +

+ +

− −

+

 
≤  
 

 (24) 

From (24), 
*

1
,

k
t t

+

∈∆  we have  

 

*
1

*

** 2 1
*

*1
1

*

1

1
1

( )2
1

2

1 1 1

( )

( )
       

i i

k

i i

i i
i i

i i

k

k
k

i i

r

m

q n
i k

rr r
t tm

k

q n
i k

E x

t

E x t

e

µ

γ

µ

µµ
µ

γ γ

µ

θ
γ

λ

λ γ

+

+

+
+

+

+

=
+

+
+

+

− −

+

+

=
+

=

 
≤ × 

 

∑

∑

 (25) 

By the properties of 
* * *

1 1k k k
Sγ γ

+ +

=  and 
*

1
,1

k
S

+

≥   

* * *
*

1

* * *

* *
*

2( 1) 2

1 1 1
1

2( 1) 2( 1) 2

1 1
1

( 1)

1 1

( ) ( )

( )

( )

k

k

n

i

ik k k

i

n

n i

ik k k

i

n

k k

E x t x t

S x t

S E x t

γ

γ

γ

γ

+

−

+ + +

=

− −

+ +

=

−

+ +

=

≤

≤

∑

∑  (26) 

From (26), the term 
*

*
1

*

1

1
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k
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µ

γ

µ
γ

+

+

+

+

+

 for ,1, ,i m= �  in the 

right term of the inequality (25), is bounded as 
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By substituting (27) into (25), for 
*

1
,

k
t t

+

∈∆  we obtain  
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From (22) and (28), for 
*

1
,

k
t t

+

∈∆  we obtain  
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1 1
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t S m
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Since 0c c− >  and 
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 from (20), we have 

( )

* *

* * * *

2

1
1

( )2

1 1 1
1

      

r

c c

k k

r

c
c c c

k k k k

S

S S

λ
γ

λ

λ
γ γ

λ

+

− −

+ + +

 
 
 

 
≤ < 
 

 (30) 

Therefore, from (29) and (30), we obtain, for 
* 1k

t t
+

∈∆  

 
*1 1

( )
c

k
t mθ γ

+

<  (31) 

Also, from (21) and (24), we have, for 
* 1k
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+

∈∆  

 

*
1*

1

1

2
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*

1
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*
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2
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1
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∫

 (32) 

From (31)-(32) with our switching logic, it is clear that no further 

switching occurs for 
*

1
.

k
t t

+

>  

(II) System regulation: We will show that if the switching is 

finite, then the closed-loop system (13) is asymptotically regulated. 

Let 
fk

t be the final switching time where fk is the finite number 

of switchings for [0, .)ft T∈  From the finite number of 

switchings, it is clear that ( )tγ  converges to a finite value 
fk

γ  

for [0, ).ft T∈  Also, by the switching logic, for , ,( )
fk ft t T∈  
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we obtain 
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i

i

k ff

r
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kE x m
γ

γ
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≤ [1, ]i m∈  (33) 

 2
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k f k ff fk f

t

f k k
t

E x d k E x t
γ γ

τ τ γ≤∫  (34) 

From (2) and (18), we have 

1

1

2

1
 

2

1

( , , )

                 ( 1)(1 ( , , ( )))
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k f k kf f f
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f k f

i i

k f

f ki i f

f

k K

k K

k

k K

r

m

i kq n
i k

dE x
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A E x

L n K x u t E x
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γ

γ
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+
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 (35) 

Thus, from (33)-(35), it is obvious that ,

k f
L

E x
γ

∞

,

k f

L

dE x

dt

γ

∞

 

and ( )
k fk f

t

t

E dx
γ

τ τ∫  are bounded as fT  becomes larger. Letting 

,fT →∞  this yields 0
k f

E x
γ

→  as t →∞  by the Lemma 7 

[3]. Then, we have 0x→  as .t →∞  Therefore, the regulation 

is achieved.  

Remark 2: The inequalities (19)-(21) are defined for showing 

that 
1
( )tθ  and 

2
( )tθ  are finite after some point of the 

switching. Using these inequality, we show that switching occurs 

only finitely. 

 

III. ILLUSTRATIVE EXAMPLES 

Example 1 (Known L): We consider the following system as  

 

2 4 4

1 2 1 2

3 6

2 2

( )

2

x x x x u

x u x u

= + +

= +

�

�

 (36) 

The system (36) contains some non-feedfoward terms. In fact, it is 

a neither triangular nor feedforward system. Thus, it cannot be 

regulated by the controllers of [1,6,8-10,13-16]. Meanwhile, since 

L is known, the method of [7] is applicable. From 

2 3 4 3 3 5

( ) 1 2 21
( , , ) (| | | | | | | | ( ) | | | | )

t
E t x u L x u x u t x u

γ
δ γ≤ + + | |u  

with L = 3, the uncertain nonlinearity satisfies Assumption 1. By 

Assumptions 1 and 2, we can obtain that 
1
( , , ( ))x u tφ γ =  

2 3

1
| | | ,|x u

4 3

2 2
( , , ( )) | | | ,|x u t x uφ γ =  and 

3
( , , ( ))x u tφ γ =  

3 5

2
( ) | | .| |t x uγ  Then, Assumption 3 is satisfied by taking 

1
2,r =

1
3,µ =

1
0,q =

2
4,r =

2
3,µ =

2
4,q =

3
3,r =

3
5,µ =  

and 
3

2.q =  We set the parameters as [ 16, 8],K = − −
0

10,γ =  

0
1,S = 2α =  and 0.8c =  with the initial states 

1
[ (0),x  

2
(0)] [5, 2] .T T

x = −  Then, we apply the proposed adaptive 

switching controller to the system (36). In Figs. 1(a) and 1(b), it is 

shown that both methods yield control results which are not much 

different from each other in the performance standpoint. 

 
(a) The proposed method. 

 
(b) The method of [7]. 

그림 1. (a) 제어된 시스템 (36)의 상태 궤적: (a) 제안한 방법

과 (b) [7]의 방법. 

Fig.  1. State trajectories of  the controlled system (36): (a) the 

proposed method and (b) the method of [7]. 

 

Example 2 (Unknown L): We reconsider Example C with 

additional uncertainties as 

 

1

5

1

3

2 2 3

1 2 1 3 1 2 1

4

2 3 2 2

4

3 3 1

( )( sin )

( )

( )

x x t x x x u x

x x t x u

x u t x u

η

η

η

= + +

= +

= +

�

�

�

 (37) 

where 
1

,( )tη
2

,( )tη  and 
3
( )tη  are only known to be finite. 

Similar to Example 1, from structural viewpoint, the results of [1], 

[6,9,10,12-14] are not applicable. Since 
1

,( )tη
2

,( )tη  and 
3
( )tη  

are unknown, the method of [7] is not applicable. It is certain that 

1 1
( ) ,t Lη ≤

22
( ) ,t Lη ≤  and 

33
( )t Lη ≤  where 

1 2 3
, , 0L L L >  

due to the boundedness of 
1

,( )tη
2

,( )tη  and 
3
( ).tη  Then, from 

( ) 1
( , , )

t
E t x u

γ
δ ≤

3
(| |L x +

1

1 2 25

1 2
( ) | | | | | |t x x uγ

−

+

1

3

2
| | | |x u + 

3

1 3
( ) | || | )(| | ( ) | |)t x u x t uγ γ+  with 

1 2 3
,L L L L≥ + +  the 

uncertain nonlinearity satisfies Assumption 1. The remaining parts 

with Assumptions 2 and 3 are shown in Example C, thus it is not 
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repeated here. We set the parameters as 
1 3 3
, ,

8 4 2
,K

 
= − − − 
 

 

0
10,γ =

0
1,S = 1.2α =  and 0.8c =  with the initial states 

1 2 3
[ (0), (0), (0)] [2, 1,1. .5]T T
x x x = −  For the simulation, we set 

1
( ) in ,st tη =

2
( ) 2 o ,c st tη =  and 

3
( 1.)tη =  Then, we apply the 

proposed controller for the system (37). It is shown in Fig. 2 that 

the system is regulated by our controller without a priori 

knowledge on the growth rate of the nonlinearity. From the 

switching logic, there exists the moment that 
1
( ) c

k
t mθ γ≥  or 

2

2
( ) ( )

kk k
t k E x t

γ
θ γ> is satisfied. 

 

IV. CONCLUSION 

We have presented a switching-based state feedback controller 

for a class of nonlinear systems with uncertain nonlinearity. The 

considered nonlinearity is not restricted to feedforward forms, but 

it is largely extended by a function containing the full states and 

the input. As a result, some nontriangular and nonfeedforward 

systems are shown to be included. Moreover, the proposed control 

scheme has an adaptive function such that the growth rate of 

nonlinearity is not needed to be known in the controller design. 

Through the examples, we show the improved and generalized 

features of our result over the existing ones. 
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그림 2. 제어된 시스템 (37)의 상태궤적과 γ (t)의 변화. 

Fig.  2. State trajectories of the controlled system (37) and evolution

of γ (t). 


