DOI QR코드

DOI QR Code

Anti-Oxidant and Antiinflammatory Effects of Rosa multiflora Root

찔레나무뿌리(Rosa multiflora root)의 항산화 및 항염증효과

  • Park, Geun-Hye (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Lee, Jin-Young (Department of Herbal Cosmetic Science, Hoseo University) ;
  • Kim, Dong-Hee (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Cho, Young-Je (Department of Food Engineering, Gyungbuk National University) ;
  • An, Bong-Jeun (Department of Cosmeceutical Science, Daegu Haany University)
  • 박근혜 (대구한의대학교 화장품약리학과) ;
  • 이진영 (호서대학교 한방화장품과학과) ;
  • 김동희 (대구한의대학교 화장품약리학과) ;
  • 조영제 (경북대학교 식품공학과) ;
  • 안봉전 (대구한의대학교 화장품약리학과)
  • Received : 2011.04.05
  • Accepted : 2011.08.26
  • Published : 2011.08.30

Abstract

Rosa multiflora thunberg belonging to Rosaceae is widely distributed in East Asia including Korea and Japan, and has been reported to have tormentic acid and rosamultin. To develop a new natural anti-inflammatory agent for cosmetics, we investigated the inhibitory effects of inflammation in Rosa multiflora root (R. multiflora root). The biological activity and anti-inflammatory effects were investigated by water, ethanol, methanol and acetone extracts of R. multiflora root. The measurements of polyphenol content from R. multiflora root were highest in water and acetone extracts, at 57.48 ${\pm}$ 0.88 mg/g and 67.05 ${\pm}$ 0.56 mg/g, respectively. The result of DPPH, ABTS and superoxide anion radical scavenging effects showed over 50% efficacy at 50 ${\mu}g/ml$ in ethanol, methanol and acetone extracts. Hyaluronidase inhibition effect showed over 60% efficacy at 500 ${\mu}g/ml$ in ethanol, methanol, and acetone extracts. Nitric oxide radical inhibition effect of R. multiflora root ethanol extracts showed over 30% efficacy at 500 ${\mu}g/ml$. We investigated the effect of R. multiflora root extracts on nitric oxide (NO) production of inducible nitric oxide synthase (iNOS) in LPS-induced RAW 264.7 macrophage cells. The result showed that R. multiflora root extracts have an inhibitory effect on NO production and iNOS expression and also can be used as an anti-inflammatory agent. These antioxidant and anti-inflammatory effects of R. multiflora root show applicant potential application as a functional cosmetic material.

찔레나무뿌리를 열수, 에탄올, 메탄올, 아세톤에서 추출하여 항산화 및 항염증 효능효과를 확인하였다. 그 결과 아세톤추출물에서 가장 많은 67.05${\pm}$0.56 mg/g의 폴리페놀 함량을 확인하였으며, SOD 유사활성능을 제외한 DPPH, ABTS, superoxide anion 라디컬소거능 확인 결과 우수한 항산화 효과를 확인하였다. 찔레나무뿌리 추출물의 HAase 저해능을 측정한 결과 에탄올, 메탄올, 아세톤 추출물 500 ${\mu}g/ml$ 에서 60% 이상의 높은 HAase 저해 효과를 확인할 수 있었다. NO 생성량을 확인한 결과, RAW 264.7 cell에서 LPS에 의해 유도된 NO 생성을 농도의존적으로 뚜렷하게 감소시키는 것을 확인하였으며, 에탄올 추출물에서 NO 생성억제 효과가 가장 우수한 것을 확인할 수 있었다. 위의 사실에 기초하여 NO 생성저해의 기전을 알아보기 위하여 iNOS의 발현을 분석한 결과, 에탄올추출물 100 ${\mu}g/ml$에서 40%의 iNOS protein 발현 감소를 확인하였으며, iNOS의 발현억제가 NO생성억제와 유사한 경향을 나타냄으로 NO생성억제는 iNOS의 발현저해를 경유한 것임을 확인할 수 있었다. 이러한 결과들은 찔레나무뿌리 추출물이 항산화 및 항염증 연구의 기초 자료로 활용될 것으로 예상된다. 또한 추후 산업적 응용도 가능함으로 기능성화장품의 가능성을 제시하고 있다.

Keywords

References

  1. Amakura, Y., M. Umono, S. Tsuji, H. Ito, T. Hatano, T. Yoshida, and Y. Tonogai. 2002. Constituents and their antioxidative effect in eucalyptus leaf extract used as a natural food additive. Food Chemistry 77, 47-56. https://doi.org/10.1016/S0308-8146(01)00321-1
  2. An, B. J. and J. T. Lee. 2002. Studies on biologlcal activity from extract of Crataegi fructus. Korean J. Herbology 17, 29-38.
  3. Black, H. S. 1987. Potential involvement of free radical reaction in ultraviolet light-mediated cutaneous damage. Photochem. Photobiol. 46, 213-221. https://doi.org/10.1111/j.1751-1097.1987.tb04759.x
  4. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1199-1120.
  5. Byun, S. H., C.H. Yang, and S. C. Kim. 2005. Inhibitory effect of Scrophulariae Radix extract on $TNF-{\alpha}$, $IL-1{\beta}$, IL-6 and nitric oxide production in lipopolysaccharide-activated Raw 264.7 cells. Korean J. Herbology 20, 7-16.
  6. Carmichael, J., W. G. DeGraff, A. F. Gazdar, J. D. Minna, and J. B. Mitchel. 1987. Evaluation of a tetrazolium based semiautomated colorimetric assay : assessment of chemosensitivity testing. Cancer Res. 47, 936-942.
  7. Choi, W. Y., H. J. Chun, J. H. Lee, and S. H. Baek. 2003. Effect of methanol extract from Cornis fructus on melanogenesis. Korean J. Pharmacogn. 31, 70-74.
  8. Folin, O. and W. Denis. 1912. On phosphotungastic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12, 239-249.
  9. Fridovich, I. 1970. Quantitative aspects of the production of superoxide anion radical by milk xanthin oxidase. J. Biol. Chem. 245, 4053-4057.
  10. Han, J. T. 2006. Development of functional material using the root of Rosamultiflora. Food Industry Nutrition 11, 59-65.
  11. Jeong, I. Y. 2005. Antioxidant activity and radio protection of two flavonoids from propolis. J. Korean Soc. Food Sci. Nutr. 34, 162-166. https://doi.org/10.3746/jkfn.2005.34.2.162
  12. Jung, B. S. and M. G. Shin. 1990. DoGam HangYak Daesajeon. pp. 648-649, Young Rim Sa, Korea.
  13. Jung, S. J., J. H. Lee, H. N. Song, N. S. Seong, S. E. Lee, and N. I. Baek. 2004. Screening for antioxidant of plant medicinal extract. J. Korean Soc. Appl. Biol. Chem. 47, 135-140.
  14. Kim, J. K. and H. S. Lee. 2000. Tyrosinase inhibitory and radical scavenging activities for the seeds of Coix. Korean J. Food Sci. Technol. 32, 1409-1413.
  15. Okamura, H., A. Mimura, Y. Yakou, M. Niwano, and Y. Takahashi. 1993. Antioxidant activity of tannins and flavonoids in Eucalyptus rostrata. Phytochemistry 33, 557-561. https://doi.org/10.1016/0031-9422(93)85448-Z
  16. Pellegrini, N., A. Proteggente, A. Pannala, M. Yang, R. Re, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  17. Pratt, D. E., M. T. Huang, S. T. Ho, and C. Y. Lee. 1992. In Phenolic compound in food and their effects on health (II), Antioxidants and Cancer Prevention. pp. 54-71, Washington DC.
  18. Reissig, J. L., J. L. Storminger, and L. F. Leloir. 1995. A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem. 217, 959-966.
  19. Stuehr, D. J., H. J. Cho, N. S. Kwon, M. F. Weise, and C. F. Nathan. 1991. Purification and characterization of the cytokine- induced macrophage nitric oxide synthase: an FADand FMN-containing flavoprotein. Proc. Natl. Acad. Sci. 88, 7773-7777. https://doi.org/10.1073/pnas.88.17.7773

Cited by

  1. Volatile Compound Analysis and Anti-oxidant and Anti-inflammatory Effects of Oenanthe javanica, Perilla frutescens, and Zanthoxylum piperitum Essential Oils vol.15, pp.3, 2017, https://doi.org/10.20402/ajbc.2016.0142
  2. A Study on Inhibitory Activities on Carbohydrase and Anti-Inflammatory Activities of Hot-Water and Ethanol Extracts from Immature Dried Bitter Melon (Momordica charantia L.) vol.25, pp.6, 2015, https://doi.org/10.17495/easdl.2015.12.25.6.999
  3. Optimization of Microwave Extraction Conditions for Antioxidant Phenolic Compounds from Ligustrum lucidum Aiton Using Response Surface Methodology vol.43, pp.4, 2014, https://doi.org/10.3746/jkfn.2014.43.4.570
  4. Anti-oxidant Efficacy and Effects on Expression of Growth Factors in Human Hair Follicle Dermal Papilla Cells of Rosa multiflora Root Extracts vol.15, pp.2, 2017, https://doi.org/10.20402/ajbc.2016.0109
  5. Anti-inflammatory Activity of the Undaria pinnatifida Water Extract vol.55, pp.4, 2012, https://doi.org/10.3839/jabc.2012.035
  6. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-κB signaling pathway vol.14, pp.4, 2016, https://doi.org/10.3892/mmr.2016.5690
  7. Anti-Inflammatory Activity of Pinus koraiensis Cone Bark Extracts Prepared by Micro-Wave Assisted Extraction vol.21, pp.3, 2016, https://doi.org/10.3746/pnf.2016.21.3.236
  8. Biological Activities of Extracts from Gamma-irradiated Aralia elata Cortex vol.43, pp.8, 2014, https://doi.org/10.3746/jkfn.2014.43.8.1236
  9. Antioxidant Activities of Solvent Extracts from Rosa multiflora vol.24, pp.11, 2014, https://doi.org/10.5352/JLS.2014.24.11.1217
  10. The Preclinical and Clinical Effects of Herbal Product Containing Rosa mutiflora Roots Extracts as a Main Component on the Hair Growth Promotion vol.20, pp.2, 2012, https://doi.org/10.7783/KJMCS.2012.20.2.108
  11. Rosae MultifloraeFructus Hot Water Extract Inhibits a Murine Allergic Asthma Via the Suppression of Th2 Cytokine Production and Histamine Release from Mast Cells vol.19, pp.9, 2016, https://doi.org/10.1089/jmf.2016.3736
  12. Anti-inflammatory Activity of the Water Extract of Sargassum fulvellum vol.27, pp.6, 2012, https://doi.org/10.7841/ksbbj.2012.27.6.325
  13. leaves extract on proinflammatory responses in lipopolysaccharide-induced Raw 264.7 cells vol.60, pp.3, 2017, https://doi.org/10.3839/jabc.2017.031
  14. Evaluation of Pharmacological Activities of Ethanol Extracts Prepared from Selected Korean Medicinal Plants vol.33, pp.6, 2018, https://doi.org/10.13103/JFHS.2018.33.6.427
  15. Preventive effects of a novel herbal mixture on atopic dermatitis-like skin lesions in BALB/C mice vol.19, pp.1, 2019, https://doi.org/10.1186/s12906-018-2426-z