DOI QR코드

DOI QR Code

Inactivation of Bacterial Spores by High Pressure and Food Additive Combination

초고압과 식품첨가물 병용을 이용한 세균 포자의 살균

  • Chung, Yoon-Kyung (Department of Nutrition and Culinary Science Hankyong National University)
  • 정윤경 (국립한경대학교 영양조리과학과)
  • Received : 2011.06.29
  • Accepted : 2011.08.04
  • Published : 2011.08.30

Abstract

Antimicrobial efficacy of high pressure (HP) can be enhanced by the application of additional hurdles. The objective of this study was to assess the enhancement in pressure lethality by tert-butylhydroquinone (TBHQ) treatment, against bacterial spores that are considered significant in the food industry. Spores of Clostridium sporogenes, Bacillus cereus and B. subtilis were prepared. Spore suspensions containing TBHQ (200 ppm, dissolved in dimethyl sulfoxide, DMSO) were pressurized at 650 or 700 MPa at 54-72$^{\circ}C$ for 5 min. Inactivation of bacterial spores resulted only with HP treatment. The population of B. subtilis spores was more inactivated by HP than those of B. cereus and C. sporogenes spores. Inactivation of C. sporogenes spores using pressure was more affected by the germinated population, compared to Bacillus spores. The inactivation of Bacillus spores increased when pressurized at 70$^{\circ}C$, compared to 54$^{\circ}C$. On the other hand, the degree of germination-induced lethality for Bacillus spores decreased at 70$^{\circ}C$. When spores were treated with a combination of DMSO-HP and TBHQ-HP, these treatments seemed to protect the spores against HP, especially at 54$^{\circ}C$. Further mechanistic studies involved in inducing germination by HP and using a subsequent sporicidal agent will be needed for a better understanding of bacterial spore inactivation.

초고압의 미생물에 대한 살균 효과는 다른 제어 방법을 더 적용함으로써 증대 될 수 있다. 본 연구의 목적은 식품 산업에서 중요한 세균 포자들을 tert-butylhydroquinone (TBHQ)를 처리하여 초고압 살균효과를 증진시킴을 알아보고자 한다. Clostridium sporogenes, Bacillus cereus, Bacillus subtilis의 포자를 준비하였다. Dimetylsulfoxide(DMSO)에 용해시킨 TBHQ 200 ppm을 함유한 포자액을 650 또는 700 MPa로, 54-72$^{\circ}C$에서 5분간 처리하였다. 세균 포자의 사멸은 초고압 처리 이후에만 일어났다. Bacillus subtilis 포자가 B. cereus나 C. sporogenes 포자보다 초고압에 의해 더 많이 사멸되었다. C. sporogenes 포자의 사멸은 Bacillus 포자에 비해서 초고압에 의한 germination이 더 일어나면서 이루어 졌다. Bacillus 포자는 54$^{\circ}C$에서 초고압 처리 때 보다 72$^{\circ}C$에서 처리했을 때 더 많이 사멸되었다. 하지만 germination에 의한 사멸은 70$^{\circ}C$에서 감소되었다. 포자를 DMSO와 초고압, TBHQ와 초고압의 병용 처리를 했을 때, 특히 54$^{\circ}C$에서는 포자 사멸이 덜 일어났다. 세균 포자의 사멸에 대한 좀 더 나은 이해를 위해서는 초고압에 의한 germination 과 다른 포자 억제 물질과의 상호 작용에 대한 메커니즘 연구들이 필요하다.

Keywords

References

  1. Al-Khayat, M. A. and G. Blank. 1985. Phenolic spice components sporostatic to Bacillus subtilis. J. Food Sci. 50, 971-974, 980. https://doi.org/10.1111/j.1365-2621.1985.tb12992.x
  2. Billon, C. M. P., C. J. McKirgan, P. J. McClure, and C. Adair. 1997. The effect of temperature on the germination of single spores of Clostridium botulinum 62A. J. Appl. Microbiol. 82, 48-56. https://doi.org/10.1111/j.1365-2672.1997.tb03296.x
  3. Chaibi, A., L. H. Ababouch, K. Belasri, S. Boucetta, and F. F. Busta. 1997. Inhibition of germination and vegetative growth of Bacillus cereus T and Clostridium botulinum 62A spores by essential oils. Food Microbiol. 14, 161-174 https://doi.org/10.1006/fmic.1996.0075
  4. Cheftel, J. C. 1995. Review: high pressure, microbial inactivation and food preservation. Food Sci. Technol. Int. 1, 75-90. https://doi.org/10.1177/108201329500100203
  5. Chung, Y. K. and A. E. Yousef. 2008. Inactivation of barotolerant strains of Listeria monocytogenes and Escherichia coli O157:H7 by ultra high pressure and tert-butylhydroquinone combination. J. Microbiol. 46, 289-294. https://doi.org/10.1007/s12275-008-0090-6
  6. Clery-Barraud, C., A. Gaubert, P. Masson, and D. Vidal. 2004. Combined effects of high hydrostatic pressure and temperature for inactivation of Bacillus anthracis spores. Appl. Environ. Microbiol. 70, 635-637. https://doi.org/10.1128/AEM.70.1.635-637.2004
  7. Clouston, J. G. and P. A. Wills. 1969. Initiation of germination anf inactivation of Bacillus pumilus spores by hydrostatic pressure. J. Bacteriol. 97, 684-690.
  8. Gueldner, R. C., D. M. Wilson, and A. Heidt. 1985. Volatile compounds inhibiting Aspergillus flavus. J. Food Chem. 33, 441-443.
  9. Heinz, V. and D. Knorr. 1996. High pressure inactivation kinetics of Bacillus subtilis cells by a three-state-model considering distributed resistance mechanisms. Food Biotechnol. 10, 149-161. https://doi.org/10.1080/08905439609549908
  10. Heinz, V. and D. Knorr. 2001. Effects of high pressure on spores. pp. 77-113, In Hendrickx, M. E. G. and D. Knorr (eds.), Ultra-high pressure treatment of foods. Kluwer Academic/Plenum Publishers, New York.
  11. Holters, C., B. Sojka, and H. Ludwig. 1997. Pressure-induced germination of bacterial spores from Bacillus subtilis and Bacillus stearothermophilus. pp. 257-260, In Heremans, K. (ed.), High pressure research in the biosciences and biotechnology. Leuven University Press, Leuven.
  12. Ismaiel, A. A. and M. D. Pierson. 1990. Inhibition of germination, outgrowth, and vegetative growth of Clostridium botulinum 67B by spice oils. J. Food Prot. 53, 755-758.
  13. Khadre, M. A. and A. E. Yousef. 2001. Sporicidal action of ozone and hydrogen peroxide: a comparative study. Int. J. Food Microbiol. 71, 131-138. https://doi.org/10.1016/S0168-1605(01)00561-X
  14. Knorr, D. 1999. Novel approaches in food processing technology: new technologies for processing of foods and modifying function. Curr. Opin. Biotechnol. 10, 485-491. https://doi.org/10.1016/S0958-1669(99)00015-4
  15. Kurita, N., M. Miyaji, R. Kurane, Y. Takahara, and K. Ichimura. 1981 Antifungal activity of components of essential oils. Agric. Biol. Chem. 45, 945-952. https://doi.org/10.1271/bbb1961.45.945
  16. Lopez-Pedemonte, T., A. X. Roig-Sagues, A. J. Trujillo, M. Capellas, and B. Guamis. 2003. Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressure with the addition of nisin or lysozyme. J. Dairy Sci. 86, 3075-3081 https://doi.org/10.3168/jds.S0022-0302(03)73907-1
  17. Mallidis, C. G. and D. Drizou. 1991. Effect of simultaneous application of heat and pressure on the survival of bacterial spores. J. Appl. Bacteriol. 71, 285-288. https://doi.org/10.1111/j.1365-2672.1991.tb04460.x
  18. Malone, A. S., Y. K. Chung, and A. E. Yousef. 2008. Proposed mechanism of inactivating Escherichia coli O157:H7 by ultra-high pressure in combination with tertbutylhydroquinone. J. Appl. Microbiol. 105, 2046-2057. https://doi.org/10.1111/j.1365-2672.2008.03973.x
  19. Oh, S. and M. J. Moon. 2003. Inactivation of Bacillus cereus spores by high hydrostatic pressure at different temperatures. J. Food Prot. 66, 599-603.
  20. Paidhungat, M., B. Setlow, W. B. Daniels, D. G. Hoover, E. Papafragkou, and P. Setlow. 2002. Mechanisms of initiation of germination of spores of Bacillus subtilis by pressure. Appl. Environ. Microbiol. 68, 3172-3175. https://doi.org/10.1128/AEM.68.6.3172-3175.2002
  21. Raso, J., M. M. Góngora-Nieto, G. V. Barbosa-Cánovas, and B. G. Swanson. 1998. Influence of several environmental factors on the initiation of germination and inactivation of Bacillus cereus by high hydrostatic pressure. Int. J. Food Microbiol. 44, 125-132. https://doi.org/10.1016/S0168-1605(98)00130-5
  22. Reddy, N. R., M. D. Pierson, and R. V. Lechowich. 1982. Inhibition of Clostridium botulinum by antioxidants, phenols, and related compounds. Appl. Environ. Microbiol. 43, 835-839.
  23. Rovere, P., L. Miglioli, N. G. Lonneborg, N. Scaramuzza, and S. Gola. 1998. Modeling and calculation of the sterilizing effect in high pressure heat-treatments. Industria Conserve 73, 303-315.
  24. Sala, F. J., P. Ibarz, A. Palop, J. Raso, and S. Condon. 1995. Sporulation temperature and heat resistance of Bacillus subtilis at different pH values. J. Food Prot. 58, 239-243.
  25. Sale, A. J. H., G. W. Gould, and W. A. Hamilton. 1970. Inactivation of bacterial spores by hydrostatic pressure. J. Gen. Microbiol. 60, 323-334. https://doi.org/10.1099/00221287-60-3-323
  26. Setlow, P. 2006. Spores of Bacillus: their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101, 514-525. https://doi.org/10.1111/j.1365-2672.2005.02736.x
  27. Shearer, A. E. H., C. P. Dunne, A. Sikes, and D. G. Hoover. 2000. Bacterial spore inhibition and inactivation in foods by pressure, chemical preservatives, and mild heat. J. Food Prot. 63, 1503-1510.
  28. Smelt, J. P. P. M. 1998. Recent advances in the microbiology of high pressure processing. Trends Food Sci. Technol. 9, 152-158. https://doi.org/10.1016/S0924-2244(98)00030-2
  29. Vurma, M., Y. K. Chung, T. H. Shellhammer, E. J. Turek, and A. E. Yousef. 2006. Use of phenolic compounds for sensitizing Listeria monocytogenes to high-pressure processing. Int. J. Food Microbiol. 106, 269-275.
  30. Wuytack, E. Y., S. Boven, and C. W. Michiels. 1998. Comparative study of pressure-induced Bacillus subtilis spores at low and high pressure. Appl. Environ. Microbiol. 64, 3220-3224.

Cited by

  1. Textural Characteristics and Bacterial Reduction in Glutinous Rice and Brown Rice Pretreated with Ultra-High Pressure vol.48, pp.1, 2016, https://doi.org/10.9721/KJFST.2016.48.1.92
  2. The effect of fibrolytic enzyme, Lactobacillus plantarum and two food antioxidants on the fermentation quality, alpha-tocopherol and beta-carotene of high moisture napier grass silage ensiled at different temperatures vol.221, 2016, https://doi.org/10.1016/j.anifeedsci.2016.08.020
  3. Study on the Hurdle Technique for the Reduction of Bacillus cereus Spores in Doenjang and Gochujang vol.41, pp.12, 2012, https://doi.org/10.3746/jkfn.2012.41.12.1842
  4. In vitro assessment of synthetic phenolic antioxidants for inhibition of foodborne Staphylococcus aureus, Bacillus cereus and Pseudomonas fluorescens vol.30, pp.2, 2013, https://doi.org/10.1016/j.foodcont.2012.07.047