DOI QR코드

DOI QR Code

Direct Interaction of KIF5s and Actin-Based Transport Motor, Myo9s

KIF5s와 직접 결합하는 액틴 결합 운동단백질 Myo9s의 규명

  • Seog, Dae-Hyun (Department of Biochemistry, College of Medicine, Inje University)
  • 석대현 (인제대학교 의과대학 생화학교실)
  • Received : 2011.05.12
  • Accepted : 2011.07.12
  • Published : 2011.08.30

Abstract

Microtubule-based kinesin motor proteins are used for long-range vesicular transport. KIF5s (KIF5A, KIF5B and KIF5C) mediate the transport of various membranous vesicles along microtubules, but the mechanism behind how they recognize and bind to a specific cargo has not yet been completely elucidated. To identify the interaction protein for KIF5B, yeast two-hybrid screening was performed and a specific interaction with the unconventional myosin Myo9b, an actin-based vesicle transport motor, was found. The GTPase-activating protein (GAP) domain of Myo9s was essential for interaction with KIF5B in the yeast two-hybrid assay. Myo9b bound to the carboxyl-terminal region of KIF5B and to other KIF5 members. In addition, glutathione S-transferase (GST) pull-downs showed that Myo9s specifically interact to the complete Kinesin-I complex. An antibody to KIF5B specifically co-immunoprecipitated KIF5B associated with Myo9s from mouse brain extracts. These results suggest that kinesin-I motor protein interacts directly with actin-based motor proteins in the cell.

미세소관(microtubule) 위를 이동하는 키네신은 분비소포를 이동시키는 운동단백질이다. KIF5s (KIF5A, KIF5B and KIF5C)는 세포막으로 싸인 각종 세포 내 소기관과 결합하여 미세소관을 따라 목적지까지 이동시킨다는 결과는 알려져 있지만, 어떻게 상대의 cargo를 인식하는지는 밝혀지지 않았다. 본 연구는 KIF5B의 결합 단백질을 동정하기 위하여 효모 two-hybrid system을 사용하여 KIF5B와 특이적으로 결합하는 Myo9b을 확인하였다. Myo9b는 액틴위를 이동하는 운동단백질로 다른 KIF5s들과도 결합함을 효모 two-hybrid assay로 확인하였다. 또한 Myo9s의 GTPase 활성화 단백질(GAP) 영역은 KIF5B와 결합하는데 필수영역임을 확인하였고, 이러한 단백질간의 결합은 Glutathione S-transferase (GST) pull-down assay를 통하여서도 확인하였다. 생쥐의 뇌 파쇄액에 KIF5B들의 항체로 면역침강을 행하여 Myo9s 단백질을 확인한 결과, KIF5s는 Myo9s 단백질과 특이적으로 함께 침강하였다. 이러한 결과들은 kinesin-I는 액틴 결합 운동단백질과 직접 결합함을 보여준다.

Keywords

References

  1. Abouhamed, M., K. Grobe, I. V. San, S. Thelen, U. Honnert, M. S. Balda, K. Matter, and M. Bähler. 2009. Myosin IXa regulates epithelial differentiation and its deficiency results in hydrocephalus. Mol. Biol. Cell 20, 5074-5085. https://doi.org/10.1091/mbc.E09-04-0291
  2. Bi, G. Q., R. L. Morris, G. Liao, J. M. Alderton, J. M. Scholey, and R. A. Steinhardt. 1997. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J. Cell Biol. 138, 999-1008. https://doi.org/10.1083/jcb.138.5.999
  3. Bowman, A. B., A. Kamal, B. W. Ritchings, A. V. Philp, M. McGrail, J. G. Gindhart, and L. S. Goldstein. 2000. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583-594. https://doi.org/10.1016/S0092-8674(00)00162-8
  4. Brady, S. T. 1985. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73-75. https://doi.org/10.1038/317073a0
  5. Cai, Q., P. Y. Pan, and Z. H. Sheng. 2007. Syntabulin-kinesin- 1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly. J. Neurosci. 27, 7284-7296. https://doi.org/10.1523/JNEUROSCI.0731-07.2007
  6. Hanley, P. J., Y. Xu, M. Kronlage, K. Grobe, P. Schön, J. Song, L. Sorokin, A. Schwab, and M. Bahler. 2010. Motorized RhoGAP myosin IXb (Myo9b) controls cell shape and motility. Proc. Natl. Acad. Sci. USA 107, 12145-12150. https://doi.org/10.1073/pnas.0911986107
  7. Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526. https://doi.org/10.1126/science.279.5350.519
  8. Hirokawa, N., S. Niwa, and Y. Tanaka. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638. https://doi.org/10.1016/j.neuron.2010.09.039
  9. Kanai, Y., N. Dohmae, and N. Hirokawa. 2004. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513-525. https://doi.org/10.1016/j.neuron.2004.07.022
  10. Kim, S. J., C. H. Lee, H. Y. Park, S. S. Yea, W. H. Jang, S. K. Lee, Y. H. Park, O. S. Cha, I. S. Moon, and D. H. Seog. 2007. JSAP1 interacts with kinesin light chain 1 through conserved binding segments. J. Life Sci. 17, 889-895. https://doi.org/10.5352/JLS.2007.17.7.889
  11. Langford, G. M. 1995. Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr. Opin. Cell Biol. 7, 82-88. https://doi.org/10.1016/0955-0674(95)80048-4
  12. LeBeux, Y. J. and J. Willemot. 1975. An ultrastructural study of the microfilaments in rat brain by means of E-PTA staining and heavy meromyosin labeling. II. The synapses. Cell Tissue Res. 160, 37-68.
  13. Lillie, S. H. and S. S. Brown. 1992. Suppression of a myosin defect by a kinesin-related gene. Nature 356, 358-361. https://doi.org/10.1038/356358a0
  14. Lillie, S. H. and S. S. Brown. 1994. Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J. Cell Biol. 125, 825-842. https://doi.org/10.1083/jcb.125.4.825
  15. Mochida, S., H. Kobayashi, Y. Matsuda, Y. Yuda, K. Muramoto, and Y. Nonomura. 1994. Myosin II is involved in transmitter release at synapses formed between rat sympathetic neurons in culture. Neuron 13, 1131-1142. https://doi.org/10.1016/0896-6273(94)90051-5
  16. Muresan, Z. and V. Muresan. 2005. Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1. J. Cell Biol. 171, 615-625. https://doi.org/10.1083/jcb.200502043
  17. O'Connell, C. B. and M. S. Mooseker. 2003. Native Myosin-IXb is a plus-, not a minus-end-directed motor. Nat. Cell Biol. 5, 171-172. https://doi.org/10.1038/ncb924
  18. Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769-780. https://doi.org/10.1016/0092-8674(95)90538-3
  19. Post, P. L., G. M. Bokoch, and M. S. Mooseker. 1998. Human myosin-IXb is a mechanochemically active motor and a GAP for rho. J. Cell Sci. 111, 941-950.
  20. Post, P. L., M. J. Tyska, C. B. O'Connell, K. Johung, A. Hayward, and M. S. Mooseker. 2002. Myosin-IXb is a single- headed and processive motor. J. Biol. Chem. 277, 11679-11683. https://doi.org/10.1074/jbc.M111173200
  21. Rahman, A., D. S. Friedman, and L. S. Goldstein. 1998. Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins. J. Biol. Chem. 273, 15395-15403. https://doi.org/10.1074/jbc.273.25.15395
  22. Reinhard, J., A. A. Scheel, D. Diekmann, A. Hall, C. Ruppert, M. Bahler. 1995. A novel type of myosin implicated in signalling by rho family GTPases. EMBO J. 14, 697-704.
  23. Rossman, K. L., C. J. Der, and J. Sondek. 2005. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6, 167-180. https://doi.org/10.1038/nrm1587
  24. Ryu, J., L. Liu, T. P. Wong, D. C. Wu, A. Burette, R. Weinberg, Y. T. Wang, and M. Sheng. 2006. A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49, 175-182. https://doi.org/10.1016/j.neuron.2005.12.017
  25. Saeki, N., H. Tokuo, and M. Ikebe. 2005. BIG1 is a binding partner of myosin IXb and regulates its Rho-GTPase activating protein activity. J. Biol. Chem. 280, 10128-10134. https://doi.org/10.1074/jbc.M413415200
  26. Setou, M., D. H. Seog, Y. Tanaka, Y. Kanai, Y. Takei, M. Kawagishi, and N. Hirokawa. 2002. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87. https://doi.org/10.1038/nature743
  27. Sousa, A. D., J. S. Berg, B. W. Robertson, R. B. Meeker, and R. E. Cheney. 2006. Myo10 in brain: developmental regulation, identification of a headless isoform and dynamics in neurons. J. Cell Sci. 119, 184-194. https://doi.org/10.1242/jcs.02726
  28. Su, Q., Q. Cai, C. Gerwin, C. L. Smith, and Z. H. Sheng. 2004. Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat. Cell Biol. 6, 941-953. https://doi.org/10.1038/ncb1169
  29. Tanaka, Y., Y. Kanai, Y. Okada, S. Nonaka, S. Takeda, A. Harada, and N. Hirokawa. 1998. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147-1158. https://doi.org/10.1016/S0092-8674(00)81459-2
  30. Tcherkezian, J. and N. Lamarche-Vane. 2007. Current knowledge of the large RhoGAP family of proteins. Biol. Cell 99, 67-86. https://doi.org/10.1042/BC20060086
  31. Vale, R. D., T. S. Reese, and M. P. Sheetz. 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39-50. https://doi.org/10.1016/S0092-8674(85)80099-4
  32. Vallee, R. B., G. E. Seale, and J. W. Tsai. 2009. Emerging roles for myosin II and cytoplasmic dynein in migrating neurons and growth cones. Trends Cell Biol. 19, 347-355. https://doi.org/10.1016/j.tcb.2009.03.009
  33. Wirth, J. A., K. A. Jensen, P. L. Post, W. M. Bement, and M. S. Mooseker. 1996. Human myosin-IXb, an unconventional myosin with a chimerin-like rho/rac GTPase-activating protein domain in its tail. J. Cell Sci. 109, 653-661.
  34. Xia, C. H., A. Rahman, Z. Yang, and L. S. Goldstein. 1998. Chromosomal localization reveals three kinesin heavy chain genes in mouse. Genomics 52, 209-213. https://doi.org/10.1006/geno.1998.5427
  35. Zhu, X. J., C. Z. Wang, P. G. Dai, Y. Xie, N. N. Song, Y. Liu, Q. S. Du, L. Mei, Y. Q. Ding, and W. C. Xiong. 2007. Myosin X regulates netrin receptors and functions in axonal path-finding. Nat. Cell Biol. 9, 184-192. https://doi.org/10.1038/ncb1535