Shear Bond Strength of Composite Resin ($TESCERA^{TM}$ ATL) Veneering on Zirconia Surface with Various Surface Treatments

지르코니아의 표면처리 방법에 따른 압축강화형 복합레진 ($TESCERA^{TM}$ ATL)전장의 결합강도

  • Park, Soo-Jeong (Department of Biomaterials & Prosthodontics, Graduate School of Dentistry, Kyung Hee University) ;
  • Lee, Richard Sung-Bok (Department of Biomaterials & Prosthodontics, Graduate School of Dentistry, Kyung Hee University) ;
  • Lee, Suk-Won (Department of Biomaterials & Prosthodontics, Graduate School of Dentistry, Kyung Hee University) ;
  • Ahn, Su-Jin (Department of Biomaterials & Prosthodontics, Graduate School of Dentistry, Kyung Hee University) ;
  • Lim, Ho-Nam (Department of Dental Materials, Graduate School of Dentistry, Kyung Hee University)
  • 박수정 (경희대학교 치과대학.치의학전문대학원 치과보철학교실) ;
  • 이성복 (경희대학교 치과대학.치의학전문대학원 치과보철학교실) ;
  • 이석원 (경희대학교 치과대학.치의학전문대학원 치과보철학교실) ;
  • 안수진 (경희대학교 치과대학.치의학전문대학원 치과보철학교실) ;
  • 임호남 (경희대학교 치과대학.치의학전문대학원 치과재료학교실)
  • Received : 2010.12.10
  • Accepted : 2011.03.25
  • Published : 2011.03.30

Abstract

The aim of this study was to evaluate shear bond strength of pressed reinforced composite resin ($TESCERA^{TM}$ ATL) veneering to zirconia with various surface treatments. Forty sintered zirconia specimens and forty pockmarked zirconia specimens were fabricated. All the materials were categorized as Group 1 (Control : porcelain veneering on zirconia surface), Group 2 ( $TESCERA^{TM}$ ATL dentine veneering after bonding agent application on zirconia surface), Group 3 ($TESCERA^{TM}$ ATL dentine veneering on pockmarked zirconia surface), Group 4 ($TESCERA^{TM}$ ATL dentine veneering after bonding agent application on pockmarked zirconia surface), Group 5 (Thermocycling on Group 1), Group 6 (Thermocycling on Group 2), Group 7 (Thermocycling on Group 3), and Group 8 (Thermocycling on Group 4). SBS(Shear bond strength) of 8 groups was determined with an Instron Universal Testing Machine. Also fractured surface of specimens were observed with a scanning electron microscope. There were no significant differences in the initial SBS between Group 1(control group), Group 3, and Group 4. (p>0.05) Group 2 presented the lowest SBS values. There was a no significant difference between just as 24hour water storage and simulated aging on pockmarked zirconia groups. (p>0.05) A formation of pockmarked irregularities on zirconia surface as mechanically pitted surface was reliable method for establishing a stronger bond between $TESCERA^{TM}$ ATL and zirconia-based material.

압축강화형 복합레진($TESCERA^{TM}$ ATL)을 지르코니아 framework에 효과적으로 전장하기 위하여, 표면처리 방법을 여러 가지로 달리한 지르코니아 표면에 압축강화형 복합레진을 전장하여 전단결합강도를 실험적으로 비교하였다. 지르코니아의 표면적 증가를 도모하기 위해 최종소결 전 지름 1.1mm round bur를 사용하여 지르코니아 표면에 pockmark (honey-comb concept)를 형성하였고, 화학적으로는 Primer (Zr-plus primer, Bisco, Inc., Shaumurg, USA)를 도포하여 결합강도 증가를 도모하였다. 지르코니아에 porcelain을 적층하여 대조군으로 삼고 각 군을 5도와 55도 사이에서 10,000회 thermocycling시켜 simulated aging 결과 또한 비교하였다. 전단결합강도를 측정하였고 주사전자현미경을 통해 파절단면을 관찰하였다. Pockmark를 형성한 실험군에 압축강화형 복합레진($TESCERA^{TM}$ ATL) 전장 시 도재 전장과 유사한 전단결합 강도를 발휘하였으며,(p>0.05) 동일 시편을 24시간 수중 보관했을 때에 비해 thermocycling 했을 때의 전단결합강도가 약간 감소하였으나 유의차는 보이지 않았다.(p>0.05) 지르코니아 표면에의 Primer의 도포가 압축강화형 복합레진 ($TESCERA^{TM}$ ATL)과의 결합강도를 증가시키지는 못하였다. 지르코니아 소결 전 표면에 pockmark를 주어 표면적을 증가시키고 요철의 효과를 주는 것은 $TESCERA^{TM}$ ATL과의 결합강도를 증가시켰으며, 이는 임상적으로 지르코니아-포세린의 결합강도에 필적하는 강하고 내구성 있는 결합강도를 가져온다고 판단되었다.

Keywords

References

  1. Shimizu K, Oka M, Kumar P, Kotoyra Y, Yamamuro T, Makinouchi K. Time-dependent changes in the mechanical properties of zirconia ceramic. J Biomed Mater Res 1993;27:729-734. https://doi.org/10.1002/jbm.820270605
  2. Blatz MB, Chiche G, Holst S, Sadan A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. Quintessence Int. 2007;38(9):745-53.
  3. Kakehashi Y, Luthy H, Naef R, Wohlwend A, Scharer P. A new all ceramic post and core system: clinical, technical, and in vitro results. Int J Periodontics Restorative Dent 1998;18:587-593.
  4. Meyenberg KH, Luthy H, Scharer P. Zirconia posts: a new all ceramic concept for nonvital abutment teeth. J Esthet Dent 1995;7:73-80. https://doi.org/10.1111/j.1708-8240.1995.tb00565.x
  5. Yildirim M, Fischer H, Marx R, Edelhoff D. In vivo fracture resistance of implant-supported all-ceramic restorations. J Prosthet Dent 2003;90:325-331. https://doi.org/10.1016/S0022-3913(03)00514-6
  6. Glauser R, Sailer I, Wohlwend A, Studer S, Schibli M, Scharer P. Experimental zirconia abutments for implant-supported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study. Int J Prosthodont. 2004;17:285-290.
  7. Tinschert J, Natt G, Mautsch W, Spiekermann H, Anusavice KJ. Marginal fit of alumina and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 2001;26:367-374.
  8. Saito A, Komine F, Blatz, M.B, Matsumura, H. A comparison of bond strength of layered veneering porcelains to zirconia and metal. J Prosthet Dent 2010;104:247-257. https://doi.org/10.1016/S0022-3913(10)60133-3
  9. Coornaert J, Adriaens P, Boever J. Long-term clinical study of porcelain-fused-to gold restorations. J Prosthet Dent 1984;51:338-42. https://doi.org/10.1016/0022-3913(84)90217-8
  10. Carl M. Pogoncheff, Renee E. Duff, Ann Arbor, Mich. Use of zirconia collar to prevent interproximal porcelain fracture: A clinical report. J Prosthet Dent 2010;104:77-79. https://doi.org/10.1016/S0022-3913(10)60095-9
  11. Freilich MA, Karmaker AC, Burstone CJ, Goldberg AJ. Development and clinical applications of a light-polymerized fiber-reinforced composite. J Prosthet Dent 1998;80:311-18. https://doi.org/10.1016/S0022-3913(98)70131-3
  12. TESCERA ATL. Information for use. BISCO
  13. Borges GA, Sophr AM, de Goes MF. Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics. J Prosthet Dent 2003;89:479-488. https://doi.org/10.1016/S0022-3913(02)52704-9
  14. Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: a review of the literature. J Prosthet Dent 2003;89:268-74. https://doi.org/10.1067/mpr.2003.50
  15. Kwon JE, Kim HS. Analysis on the bonding characteristics of interface between zirconia and veneered porcelain, Kyung Hee University, 2007.
  16. Choi HC, Lee SB. Shear bond strength of pressed reinforced composite resin($TESCERA^{TM}$ ATL) to porcelain opaque with various surface treatment, Kyung Hee University, 2006.
  17. Blatz MB, Sadan A, Martin J, Lang B. In vitro evaluation of shear bond strengths of resin to densely-sintered high-purity zirconium-oxide ceramic after long-term storage and thermal cycling. J Prosthet Dent 2004;91:356-62. https://doi.org/10.1016/j.prosdent.2004.02.001
  18. Blatz MB, Sadan A, Arch GH Jr, Lang BR. In vitro evaluation of long-term bonding of Procera All Ceram alumina restorations with a modified resin luting agent. J Prosthet Dent 2003;89:381-7. https://doi.org/10.1067/mpr.2003.89
  19. Zhang Y, Lawn BR, Malament KA, Van Thompson P, Rekow ED. Damage accumulation and fatiguelife of particle-abraded ceramics. Int J Prosthodont 2006;19:442-448.
  20. Zhang Y, Lawn BR, Rekow ED, Van Thompson P. Effect of sandblasting on the long-term performance of dental ceramics. J Biomed Mater Res B Appl Biomater 2004;71:381-386.
  21. Kern M, Wegner SM. Bonding to zirconia ceramic: adhesion methods and durability. Dent Mater 1998;14:64-71. https://doi.org/10.1016/S0109-5641(98)00011-6
  22. Atsu SS, Kilicarslan MA, Kucukesmen HC, Aka PS. Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. J Proshtet Dent 2006;95:430-6. https://doi.org/10.1016/j.prosdent.2006.03.016
  23. Pascal Magnea, Maria P.G. Paranhosa,b, Luiz H. Burnett Jr. New zirconia primer improves bond strength of resin-based cements. Dental materials 2010;26:345-352. https://doi.org/10.1016/j.dental.2009.12.005
  24. B. al-amleh, K. lyons, M. swain. J Oral Rehabilitation Clinical trials in zirconia: a systematic review. 2010;37:641-652.
  25. Fischer J, Stawarzcyk B, Trottmann A, Hammerle CH. Impact of thermal misfit on shear strength of veneering ceramic/zirconia composites. Dent Mater. 2009;25:419-423. https://doi.org/10.1016/j.dental.2008.09.003
  26. Ashkanani HM, Raigrodski AJ, Flinn BD, Heindl H, Mancl LA. Flexural and shear strengths of ZrO2 and a high-noble alloy bonded to their corresponding porcelains. J Prosthet Dent. 2008;100:274-284. https://doi.org/10.1016/S0022-3913(08)60206-1
  27. Ohlmann B, Rammelsberg P, Schmitter M, Schwarz S, Gabbert O. All-ceramic inlay-retained fixed partial dentures: preliminary results from a clinical study. J Dent. 2008;36:692-696. https://doi.org/10.1016/j.jdent.2008.04.017
  28. Marchack BW, Futatsuki Y, Marchack CB, White SN. Customization of milled zirconia copings for all-ceramic crowns: a clinical report. J Prosthet Dent. 2008;99:169-173. https://doi.org/10.1016/S0022-3913(08)00028-0
  29. Coelho PG, Silva NR, Bonfante EA, Guess PC, Rekow ED, Thompson VP. Fatigue testing of two porcelain-zirconia all-ceramic crown systems. Dent Mater. 2009;25:1122-1127. https://doi.org/10.1016/j.dental.2009.03.009
  30. Beuer F, Schweiger J, Eichberger M, Kappert HF, Gernet W, Edelhoff D. High-strength CAD / CAM-fabricated veneering material sintered to zirconia copingsa new fabrication mode for all- ceramic restorations. Dent Mater. 2009;25:121-128. https://doi.org/10.1016/j.dental.2008.04.019
  31. Swain MV. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater. 2009;5:1668-1677. https://doi.org/10.1016/j.actbio.2008.12.016
  32. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II: Zirconia veneering ceramics. Dent Mater. 2006;22:857-863. https://doi.org/10.1016/j.dental.2005.11.014
  33. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part 3: double veneer technique. J Prosthodont. 2008;17:9-13.