DOI QR코드

DOI QR Code

Drought Analysis and Assessment by Using Land Surface Model on South Korea

지표수문해석모형을 활용한 국내 가뭄해석 적용성 평가

  • Son, Kyung-Hwan (Dept. of Civil and Environmental Engrg., Sejong Univ.) ;
  • Bae, Deg-Hyo (Dept. of Civil and Environmental Engrg., Sejong Univ.) ;
  • Chung, Jun-Seok (Climate Prediction Division, Korea Meteorologicical Administration)
  • 손경환 (세종대학교 토목환경공학과) ;
  • 배덕효 (세종대학교 물자원연구소 토목환경공학과) ;
  • 정준석 (기상청 기후예측과 기후예측과)
  • Received : 2011.04.22
  • Accepted : 2011.07.13
  • Published : 2011.08.31

Abstract

The objective of this study is to evaluate the applicability of a Land Surface Model (LSM) for drought analysis in Korea. For evaluating the applicability of the model, the model was calibrated on several upper dam site watersheds and the hydrological components (runoff and soil moisture) were simulated over the whole South Korea at grid basis. After converting daily series of runoff and soil moisture data to accumulated time series (3, 6, 12 months), drought indices such as SRI and SSI are calculated through frequency analysis and standardization of accumulated probability. For evaluating the drought indices, past drought events are investigated and drought indices including SPI and PDSI are used for comparative analysis. Temporal and spatial analysis of the drought indices in addition to hydrologic component analysis are performed to evaluate the reproducibility of drought severity as well as relieving of drought. It can be concluded that the proposed indices obtained from the LSM model show good performance to reflect the historical drought events for both spatially and temporally. From this point of view, the LSM can be useful for drought management. It leads to the conclusion that these indices are applicable to domestic drought and water management.

본 연구의 목적은 전지구 수문해석도구인 지표수문해석모형을 활용하여 국내 가뭄해석에 적용성을 평가하는데 있다. 이에 댐 상류 유역의 관측유입량 자료를 대상으로 모형의 모의능력을평가하고 남한 전역에 대한 수문성분(유출, 토양수분)을 생산하였다. 격자별 일 단위 유출 및 토양수분자료를 해당기간별 누가 시계열(3, 6, 12개월)로 변환하여 가뭄지수를 생산하였고, 빈도해석에 따른 누가확률값 산정 및 표준화를 통해 SRI 및 SSI를 산정하였다. 산정된 지수의 평가를 위해 국내 과거 가뭄기록사례를 조사하고 기존 가뭄지수인 SPI 및 PDSI를 활용하였다. 본 연구 결과의 평가는 시계열별, 지역별 분석 및 유역별 물수지 분석을 통해 수행되었으며, 주로 가뭄기간동안의 가뭄심도와 가뭄 발생 및 해갈의 재현여부를 평가하였다. 분석결과 SRI 및 SSI 모두 시 공간적으로 과거 기록된 피해기간 및 지역 상황을 잘 반영한 것으로 나타났으며, 가뭄기간 동안의 정량적인 수문정보 생산이 가능하다는 점에서 유역단위 가뭄관리에 유용하게 활용될 것이라는 결론을 얻었다.

Keywords

References

  1. 건설교통부(1995). 가뭄기록조사 보고서
  2. 건설교통부(2002). 2001년 가뭄기록조사 보고서
  3. 권현중, 박혁진, 홍대의, 김성준(2006). "SWSI 가뭄지수를 보완한 준분포형 수문학적 가뭄평가 연구." 한국수자원학회논문집, 한국수자원학회, 제39권, 제8호, pp. 645-658. https://doi.org/10.3741/JKWRA.2006.39.8.645
  4. 기상청(2007). 산업기상지수 산출기술 개발
  5. 류재희, 이동률, 안재현, 윤용남(2002). "가뭄평가를 위한 가뭄지수의 비교 연구." 한국수자원학회논문집, 한국수자원학회, 제35권, 제4호, pp. 397-410. https://doi.org/10.3741/JKWRA.2002.35.4.397
  6. 손경환(2010), 동아시아 지역에 대한 전구수문모형의 적용성 평가. 석사학위논문, 세종대학교, pp. 16-21.
  7. 손경환, 이종대, 배덕효(2010). "전지구 수문해석 모형의 국내 적용성 평가." 한국수자원학회논문집, 한국수자원학회, 제43권, 제12호, pp. 1063-1074. https://doi.org/10.3741/JKWRA.2010.43.12.1063
  8. 윤용남, 박무종(1997). "L-moment법을 이용한 월강우량 자료의 지역가뭄빈도 해석." 한국수자원학회논문집, 한국수자원학회, 제30권, 제1호, pp. 55-62.
  9. 이주헌, 정상만, 김성준, 이명호(2006). "가뭄모니터링 시스템 구축: I. 정량적 가뭄모니터링을 위한 가뭄지수의 적용성 분석." 한국수자원학회논문집, 한국수자원학회, 제39권, 제9호, pp. 787-800. https://doi.org/10.3741/JKWRA.2006.39.9.787
  10. 한국수자원공사(2005). 2005년 가뭄관리모니터링 체계수립 보고서.
  11. Abramowitz, M., and Stegun, I.A. (1964). Handbook of Mathematical function, U.S. Dept. of Commerce, National Bureau of Standards, Applied Mathematics Series, No. 55.
  12. Ames, D.P. (2006). "Estimating 7Q10 Confidence Limits from Data: A Bootstrap Approach." Journal ofWater Resources Planning and Management, Vol. 132, No. 3, pp. 204-208. https://doi.org/10.1061/(ASCE)0733-9496(2006)132:3(204)
  13. Andreadis, K.M., Clark, E.A., Wood, A.W., Hamlet, A.F., and Lettenmaier, D.P. (2005). "Twentieth-Century Drought in the Conterminous United States." Journal of Hydrometeorlogy, Vol. 6, Issue 6, pp. 985-1001. https://doi.org/10.1175/JHM450.1
  14. Barnes, S. (1964). "A technique for maximizing details in numerical map analysis." Journal of Applied Meteorology, Vol. 3, No. 4, pp. 395-409.
  15. Fan, Y., and Van den Dool, H. (2004). "The CPC global monthly soil moisture data set at 1/2 degree resolution for 1948-present." Journal of Geophysical Research, 109:D10102, doi:1029/2003JD004345 https://doi.org/10.1029/2003JD004345
  16. Herbst, P.H., Bredenkamp, D.B., and Barker, H.M.G. (1966). "A technique for the evaluation of drought from rainfall data." Journal of Hydrology, Vol. 4, pp. 264-272. https://doi.org/10.1016/0022-1694(66)90084-9
  17. Hogue, T.S., Sorooshian, S., Gupta, V.K., Holz, A., and Braatz, D. (2000). "A Multistip Automatic Calibration Scheme for River Forecasting Models." Journal of Hydrometeorology, Vol. 1, pp. 524-542. https://doi.org/10.1175/1525-7541(2000)001<0524:AMACSF>2.0.CO;2
  18. Hosking, J.R.M., and Wallis, J.R. (1993). "Some Statistics Useful in Regional Frequency Analysis." Water Resources Research, Vol. 11, No. 6.
  19. Jaranilla-Sanchez, P.A., Wang, L., and Koike, T. (2011). "Modeling the hydrologic responses of the Panpanga River basin, Philippines: A quantitative approach for identifying droughts", Water Resources Research, Vol. 47, W03514, doi:10.1029/2010WR 009702.
  20. Kroll, C.N., and Vogel, R.M. (2002). "Probability Distribution of Low Streamflow Series in the United States." Journal of Hydrologic Engineering, Vol. 7, No. 2, pp. 132-146.
  21. Liang, X., Lettenmaier, D.P., Wood, E.F., and Burges, S.J. (1994). "A simple hydrologically based model of land surface water and energy fluxes for general circulation models." Journal of Geophysical Research, Vol. 99, No. 7, pp. 14415-14428. https://doi.org/10.1029/94JD00483
  22. Liang, X., Jianzhong, G., and Ruby Leung, L. (2004). "Assessment of the effects of spatial resolutions on daily water flux simulations." Journal of Hydrology, Vol. 298, Issues. 1-4, pp. 287-310. https://doi.org/10.1016/j.jhydrol.2003.07.007
  23. Mckee, T.B., Doesken, N.J., and Kleist, J. (1993). "The Relationship of Drought Frequency and Duration to Time Scales." 8th Conference on Applied Climatology, 17-22 January, Anaheim, California.
  24. Mckee, T.B., Doesken, N.J., and Kleist, J. (1995). "Drought Monitoring with Multiple Time Scales Preprints." 9th Conference on Applied Climatology, 15-20 January, Dallas, TX, pp.223-236.
  25. Onoz, B., and Bayazit, M. (1999). "GEV-PWM Model for Distribution of Minimum flows." Journal of Hydrologic Engineering, Vol. 4, No. 3, pp. 289-293. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:3(289)
  26. Palmer, W.C. (1965). Meteorological drought, Research paper. No. 45, U.S. Weather Bureau.
  27. Sheffield, J., and Wood, E.F. (2008). "Global Trends and Variability in Soil Moisture and Drought Characteristics, 1950-2000, from Observation-Driven Simulations of the Terrestrial Hydrologic Cycle." Journal of Climate, Vol. 21, No. 3, pp. 432-458. https://doi.org/10.1175/2007JCLI1822.1
  28. Shukla, S., and Wood, A.W. (2008). "Use of a standardized runoff index for characterizing hydrologic dought." Geophysical Research Letters, doi:10.1029/2007GL032487.
  29. Trenberth, K.E., Overpeck, J.T., and Solomon S. (2004), "Exploring drought and its implications for the future." Eos, Transactions American Geophysical Union, Vol. 85, No. 3, pp. 27-27. https://doi.org/10.1029/2004EO030004

Cited by

  1. Derivation & Evaluation of Drought Threshold Level Considering Hydro-meteorological Data on South Korea vol.46, pp.3, 2013, https://doi.org/10.3741/JKWRA.2013.46.3.287
  2. Estimation and assessment of natural drought index using principal component analysis vol.49, pp.6, 2016, https://doi.org/10.3741/JKWRA.2016.49.6.565
  3. Construction & Evaluation of GloSea5-Based Hydrological Drought Outlook System vol.25, pp.2, 2015, https://doi.org/10.14191/Atmos.2015.25.2.271
  4. Estimation and Assessment of Bivariate Joint Drought Index based on Copula Functions vol.47, pp.2, 2014, https://doi.org/10.3741/JKWRA.2014.47.2.171
  5. Analyzing the drought event in 2015 through statistical drought frequency analysis vol.49, pp.3, 2016, https://doi.org/10.3741/JKWRA.2016.49.3.177
  6. Projection and Analysis of Drought according to Future Climate and Hydrological Information in Korea vol.47, pp.1, 2014, https://doi.org/10.3741/JKWRA.2014.47.1.71
  7. Development and Assessment of Drought Damage Estimation Technique using Drought Characteristic Factors vol.15, pp.2, 2015, https://doi.org/10.9798/KOSHAM.2015.15.2.93
  8. Applicability Assessment of Hydrological Drought Outlook Using ESP Method vol.48, pp.7, 2015, https://doi.org/10.3741/JKWRA.2015.48.7.581
  9. Utilization of the Bayesian Method to Improve Hydrological Drought Prediction Accuracy vol.31, pp.11, 2017, https://doi.org/10.1007/s11269-017-1682-x
  10. Forecasting Quarterly Inflow to Reservoirs Combining a Copula-Based Bayesian Network Method with Drought Forecasting vol.10, pp.2, 2018, https://doi.org/10.3390/w10020233