DOI QR코드

DOI QR Code

경사 다공성 Al-Cu 소결체의 제조

Fabrication of Gradient Porous Al-Cu Sintered Body

  • Byun, Jong-Min (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Se-Hoon (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Jin-Woo (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Young-Moon (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Young-Do (Division of Materials Science and Engineering, Hanyang University)
  • 투고 : 2011.06.07
  • 심사 : 2011.07.20
  • 발행 : 2011.08.28

초록

In this study, gradient porous Al-Cu sintered body was fabricated by powder metallurgy processing. Al-Cu powder mixtures were prepared by low energy ball milling with various milling time. After ball milling for 3h, the shape of powder mixtures changed to spherical type with size of 100~500 ${\mu}m$. Subsequently, Al-Cu powder mixtures were classified (under 150, 150~300 and over 300 ${\mu}m$) and compacted (20, 50 and 100 MPa). Then, they were sintered at $600^{\circ}C$ for various holding time (10, 30, 60 and 120 min) in $N_2$ atmosphere. The sintered bodies had 32~45% of porosity. As a result, the optimum holding time was determined to be 60 min at $600^{\circ}C$ and sintered bodies with various porosity were obtained by controlling the compacting pressure.

키워드

참고문헌

  1. Y. M. Kong, J. C. Kim, B. K. Kim, H. J. Ryu, Y. H. Lee, Y. C. Kang, K. A. Lee and J. Y. Yun: Trends in Met. & Mater. Eng., 23 (2010) 4 (Korean).
  2. J. Banhart: Prog. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  3. H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091. https://doi.org/10.1016/j.pmatsci.2006.09.001
  4. M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibbson, J. W. Hutchinson and H. N. G. Wadley: Metal Foams: a design guide, Butterworth-Heinemann College (2000).
  5. K. I. Salas and A. M. Waas: J. Heat Transfer, 129 (2007) 1217. https://doi.org/10.1115/1.2739598
  6. B. Y. Hur, S. H. Park, Y. H. Song, M. J. Jung and K. J. Kang: Trends in Met. & Mater. Eng., 20 (2007) 32 (Korean).
  7. H. Bray: Eng. Mater. Des., 16 (1972) 19.
  8. D. C. Dilley: Mach. Prod. Eng., 125 (1974) 24.
  9. G. J. Davies and Shu Zhen: J. Mater. Sci., 18 (1983) 1899. https://doi.org/10.1007/BF00554981
  10. L. J. Gibson and M. F. Ashby: Cellular Solids, 2nd ed., Cambridge University Press, Cambridge, (1997).
  11. K. Siziki and T. Nakagawa: Eng. Mater., 30 (1982) 104.
  12. P. Y. Huang: Principles of Powder Metallurgy, Metallurgical Industry Press, Beijing (1997).
  13. H. P. Tang and Z. D. Zhang: Rare Metal Mat. Eng., 26 (1997) 1.
  14. I. J. Polmear: Light Alloys, Arnold, London (1981).
  15. http://en.wikipedia.org/wiki/Aluminium
  16. B. P. Lee, M. G. Kim, B. J. Choi, Y. J. Kim and S. K. Hyun: J. Korean Powder Metall. Inst., 18 (2011) 95 (Korean). https://doi.org/10.4150/KPMI.2011.18.2.095
  17. N. Michailidis, F. Stergioudi and D. N. Tsipas: Adv. Eng. Mater., 13 (2011) 29. https://doi.org/10.1002/adem.201000141
  18. J. W. Song, H. S. Kim, H. M. Kim, T. S. Kim and S. J. Hong: J. Korean Powder Metall. Inst., 17 (2010) 306 (Korean).
  19. D. R. Lide: CRC Handbook of chemistry and physics, CRC Press (1995).
  20. K. H. Min, S. P. Kang, B. H. Lee, J. K. Lee and Y. D. Kim: J. Alloy Comd., 419 (2006) 290. https://doi.org/10.1016/j.jallcom.2005.09.070
  21. G. B. Schaffer, T. B. Sercombe and R. N. Lumley: Mater. Chem. Phys., 67 (2001) 85. https://doi.org/10.1016/S0254-0584(00)00424-7