DOI QR코드

DOI QR Code

IEEE 802.11 무선 랜에서의 네크워크 코딩 성능 분석

Throughput Analysis of Network Coding in IEEE 802.11 Wireless LAN

  • 장보경 (경희대학교 전자전파공학과) ;
  • 송영아 (한국정보통신기능대학 이동통신설비과) ;
  • 김정근 (경희대학교 전자전파공학과)
  • Jang, Bo-Kyung (Department of Electronics and Radio Engineering, Kyung Hee University) ;
  • Song, Young-Ah (Department of Mobile Telecommunication, Korea Information & Communication Polytechnic College) ;
  • Kim, Jeong-Geun (Department of Electronics and Radio Engineering, Kyung Hee University)
  • 발행 : 2011.08.31

초록

무선 애드 혹(ad hoc) 네트워크에서 전송 효율을 향상시킬 수 있는 방법으로 네트워크 코딩(network coding)이 많은 주목을 받고 있다. 본 논문에서는 IEEE 802.11 무선 랜에 네트워크 코딩을 적용하였을 때, 수율(throughput) 성능을 예측할 수 있는 분석 모델을 제안하고자 한다. 이 모델에서는 모든 무선 노드들이 선형 토폴로지(topology)로 네트워크를 구성하고 있고, 양단에 위치한 두 개의 소스 노드들이 패킷을 발생시키고, 중간 노드들은 네트워크 코딩을 수행하면서 패킷을 전달하는 역할을 하게 된다. 제안하는 분석 모델은 궁극적으로 각 노드별수율의 비선형 방정식 형태로 귀결되며, 이 방정식의 해를 통해서 단대단(end-to-end) 수율을 계산하게 된다. 본 논문에서 제안한 분석 모델의 정확성을 검증하기 위하여, 다양한 모의 실험을 수행하였으며, 분석 모델을 통한 수율 예측치가 시뮬레이션 결과와 상당히 일치함을 확인할 수 있었다.

Network coding has recently emerged as an effective solution for multicast and broadcast communications in wireless ad hoc networks. In this paper, we propose a throughput performance model for IEEE 802.11 wireless networks with network coding. Specifically, we consider IEEE 802.11 DCF protocol and linear topology in which traffic sources are located at both ends and intermediate nodes act as relays performing network coding. The proposed analytic model has the form of nonlinear equations in terms of throughput of each node. The solution of the nonliear equations thus correspond to the end-to-end throughput. Extensive simulation experiments have been performed to validate accuracy of the proposed model. Numerical results show that the results of the proposed analytic model agree fairly well with the corresponding simulation results.

키워드

참고문헌

  1. C. E. Perkins, Ad Hoc Networking, Addison-Wesley, 2001.
  2. IEEE 802.11-1997: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications.
  3. R. Ahlswede, N. Cai, S. Li, and R. Yeung, "Network information flow", IEEE Transactions in Information Theory, vol. 46, no. 4, pp. 1204-1216, Jul. 2000. https://doi.org/10.1109/18.850663
  4. S. Katti, D. Katabi, W. Hu Hariharan, and R. Medard, "The importance of being opportunistic practical network coding for wireless environments", in Proc. Allerton Conference, 2005.
  5. K. Lu, Y. Qian, H. -H. Chen, and S. Fu, "WiMAX networks: From access to service platform", IEEE Network, vol. 90, no. 2, pp. 38-45, 2008. https://doi.org/10.1109/MNET.2008.4519964
  6. Y. Ma, W. Li, P. Fan, and X. Liu, "Queuing model and delay analysis on network coding", in Proc. ISCIT 2005, pp. 112-115, 2005.
  7. D. Umehara, T. Hirano, S. Denno, M. Morikura, and T. Sugiyama, "Wireless network coding in slotted ALOHA with two-hop unbalanced traffic", IEEE Journal on Selected Areas in Communications, vol. 27, no. 5, pp. 647-661, Jun. 2009. https://doi.org/10.1109/JSAC.2009.090607
  8. Y. Gao, D. -M. Chio, and J. C. S. Lui, "Determinig the end-to-end throughput capacity in multi-hop networks: methodology and applications", in Proc. of SIGMETRICS: Joint International Conference on Measurement and Modeling of Computer System, vol. 34, no. 1, pp. 154-161, 2006.
  9. G. Bianchi, "Performance analysis of IEEE 802.11 distributed coordination function", IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp. 535-547, Mar. 2001. https://doi.org/10.1109/49.840210
  10. A. Kumar, E. Altman, D. Miorandi, and M. Goyal, "New insights from a fixed point analysis of single sell IEEE 802.11 WLANs", in Proceedings of the IEEE Infocom, vol. 3, pp. 1550-1561, Mar. 2005. https://doi.org/10.1109/INFCOM.2005.1498438
  11. P. C. Ng, S. C. Liew, "Throughput analysis of IEEE 802.11 multi-hop ad-hoc networks", IEEE/ACM Trans. on Networking, vol. 15, no. 2, Apr. 2007.