DOI QR코드

DOI QR Code

Shape Optimization of Multilayer Bellows by Using Sequential Experimental Design

순차적 실험계획법을 적용한 다층관 벨로우즈 형상 최적설계

  • Received : 2010.12.15
  • Accepted : 2011.07.05
  • Published : 2011.09.01

Abstract

Because of their high flexibility and durability, multilayer bellows are manufactured for use in commercial vehicles, while single-layer bellows are manufactured for use in passenger vehicles. A study based on the finite element method (FEM) and shape optimization for the single-layer bellows has been actively performed; however, until now, a study based on the FEM has rarely been performed for the multilayer bellows with gaps between the layers. This paper presents a finite-element modeling scheme for the multilayer bellows to improve simulation reliability during the evaluation of stress and flexibility. For performing shape optimization for the multilayer bellows, DOE (design of experiment) and the Kriging metamodel followed by the D-optimal method are used.

상용차용 다층관 벨로우즈는 우수한 유연성과 내구성이 요구되므로 단층으로 제조되는 승용차용 벨로우즈와는 다르게 다층의 형태로 제작된다. 단층 벨로우즈의 유한요소해석과 최적화에 대한 연구는 활발히 진행되고 있으나, 층과 층사이에 갭이 존재하는 다층형 벨로우즈의 유한요소해석과 최적화 연구는 미진하다. 따라서 본 연구에서는 해석의 신뢰성 향상을 위해 다층형 벨로우즈에 적합한 유한요소 모델을 제시하였으며, 다층관 벨로우즈의 형상 최적화를 위해 실험계획법과 D-Optimal 방법에 기반을 둔 순차적 실험계획에 의한 크리깅 메타모델을 적용하였다.

Keywords

References

  1. Koh, B. K. and Park, G. J., 1997, "Development of Finite Element Analysis Program and Simplified Formulas of Bellows and Shape Optimization," Trans. Of the KSME(A), Vol. 21, pp. 1195-1208.
  2. Younsheng, L., 1990, "Strength Analysis and Structural Optimization of U-Shaped Bellows," Int. J. Pres. Ves. & Piping, Vol. 42, pp. 33-46. https://doi.org/10.1016/0308-0161(90)90053-K
  3. Lee, S. H., Sim, D. S. and Oh, S. G., 2005, "A Numerical Analysis Study on Evaluation of the Reliability for Bellows in the Vehicle Exhaust System," J. of the Korea Society for Power System Engineering, Vol. 9, pp. 77-82.
  4. Kim, H. S., H Kim,. J., Kim, H. G. and Lee, J. S., 2007, "Shape Optimum Design of Ship's Bellows Using Statistical Method," J. of Ocean Engineering and Technology, Vol. 21, pp. 55-60
  5. Oh, S. K., Suh, C. H., Jung, Y-C., Kim, D. B., Sung, J. H. and Kim, Y. S., 2008, "Optimization of Design Variables of the Multi Layer Bellows Using FESimulation and Design of Experiment," Fall Conference of KSTP, pp. 277-280.
  6. Sacks, J., Welch, W. J., Mitchell, T. J. and H. P., 1989, Design and Analysis of Computer Experiments, Statistical Science, Vol. 4, No. 4, pp. 409-423 https://doi.org/10.1214/ss/1177012413
  7. Oh, S. K., Lee, K. K., Suh, C. H., Park, C. W., Jung, M. H. and Kim, Y. S., 2010, "Optimization of Unified Molding Process Using the Kriging meta-model," Spring Conference of KSME, pp.118-122.
  8. Lee, K. K. and Han, S. H., 2010, "Development of Computational Orthogonal Array based Fatigue Life Prediction Model for Shape Optimization of Turbine Blade," Trans. Of the KSME(A), Vol. 34, No. 3, pp. 611-617.
  9. SAS Institute Inc., 2009, JMP User's Guide.
  10. Montgomery, M., 1995, Response Surface Methodology - Process and Product Optimization Using Designed Experiments, John Wiley & Sons.
  11. Nguyen, N. K. and Miller, F. L., 1992, "A Review of Some Exchange Algorithms for Constructing Discrete D-optimal Design," Computational Statistics & Data Analysis, Vol. 14, Issue 4, pp. 489-498. https://doi.org/10.1016/0167-9473(92)90064-M

Cited by

  1. Finite Element Analysis of Large Deformation of Fiber Metal Laminates Under Bending for Stress-Strain Prediction vol.39, pp.10, 2015, https://doi.org/10.3795/KSME-A.2015.39.10.963
  2. Prediction of Dynamics of Bellows in Exhaust System of Vehicle Using Equivalent Beam Modeling vol.39, pp.11, 2015, https://doi.org/10.3795/KSME-A.2015.39.11.1105