Abstract
In this paper, we propose the Noise Cancel DTW that to use a kind of feature compensation. This method is not to use estimated noise but we use real life environment noise data for Voice Recognition. And we applied this contaminated data for recognition reference model that suitable for noise environment. NCDTW is combined with surround noise when generating reference patten. We improved voice recognition rate at mobile environment to use NCDTW.
본 논문에서는 잡음 환경에서의 음성인식 개선에 관한 내용으로 기존의 DTW에서 일종의 특징보상기법을 적용한 방식으로 예측잡음이 아닌 실생활에서의 음성잡음 데이터를 적용하여 인식모델을 잡음상황에 맞도록 적응시키는 방법으로 제안하는 Noise Cancel DTW를 사용하였다. 음성인식 시 주변노이즈를 고려한 참조패턴을 생성하여 특징 보상으로 인식률을 향상 시키는 방법으로 잡음 환경에서 음성 인식률을 향상 시켰다.