Evaluation of the Applicability of Structural Steels to Cold Regions by the Charpy Impact Test

샤르피 충격시험을 통한 구조용강재의 극한지 적용성 검토

  • Received : 2011.03.15
  • Accepted : 2011.07.29
  • Published : 2011.08.27

Abstract

The fabrication of steel structural members always involves welding process such as flux cored arc welding. Therefore, for the application of structural steels to cold regions, it is a prerequisite to clarify the service temperature of the welded joints in order to ensure the structural integrity of the welded parts. In this study, the Charpy impact test was conducted to evaluate the service temperature of structural steel weld. The Charpy impact test is a commercial quality control test for steels and other alloys used in the construction of metallic structures. The test allows the material properties for service conditions to be determined experimentally in a simple manner with a very low cost. Standard V-notch Charpy specimens were prepared and tested under dynamic loading condition. The service temperatures of the weld metal, HAZ (heat affected zone) and base metal were derived by the absorbed energy and the impact test requirements; thus the applicability of the structural steels to cold regions was discussed in detail.

본 연구에서는 구조용강재의 샤르피 충격시험(Charpy Impact Test)을 통해 저온에서의 충격 인성(Impact Toughness) 평가를 실시하여 사용 가능 온도를 파악함으로써 강재의 극한지 적용성을 검토하였다. 본 시험에 사용된 강재는 용접구조용강 중 현재 가장 널리 쓰이는 강종인 SM490B와 TMCP (Thermo-Mechanical Control Process)법에 의해 제조된 고강도 강재인 SM570-TMC이다. 또한, 본 시험결과와의 비교를 위해 남극 세종기지 건설시 사용실적이 있는 일반구조용강인 SS400에 대해서도 시험을 수행하였다. 대부분의 강구조물은 용접에 의해 제작되므로, 강재의 극한지 적용성 검토를 위해 용접시험판을 제작하여 모재(Base Metal), 용접금속(Weld Metal) 및 열양향부(Heat Affected Zone)에 대해서 충격시험을 실시하였다. 단, SS400의 경우에는 용접구조용강재가 아니므로 모재에 대해서 충격시험을 실시하였다. 대상 강재의 샤르피 충격시험을 통해서 저온에서의 충격흡수에너지 값을 구하고 이를 강재의 항복응력에 따른 충격흡수에너지의 기준값과 비교함으로써 강재의 사용온도를 결정하였으며, 이를 통해서 구조용강재의 극한지 적용성을 검토하였다.

Keywords

References

  1. 김일평, 허용, 박영석, 윤태양(2008) 도로교 설계기준 개정 소개, 대한토목학회지, 대한토목학회, 제56권, 제10호, pp.59-66.
  2. ASME (2004) Impact testing requirements, Boiler & pressure vessel code, Sec. VIII, Div. I.
  3. Bayraktar, E., Hugele, D., Jansen, J.P., and Kaplan, D. (2004) Evaluation of pipeline laser girth weld properties by Charpy (V) toughness and impact tensile tests, Journal of Materials Processing Technology, Vol. 147, pp.155-162. https://doi.org/10.1016/j.jmatprotec.2003.10.008
  4. Eurocode 3 (2005) Design of steel structures-Part 1-10: Material toughness and through-thickness properties, CEN.
  5. Folch, L.C.A. and Burdekin, F.M. (1999) Application of coupled brittle-ductile model to study correlation between Charpy energy and fracture toughness values, Engineering Fracture Mechanics, Vol. 63, pp.57-80. https://doi.org/10.1016/S0013-7944(99)00009-0
  6. Jang, Y.C., Hong, J.K., Park, J.H., Kim, D.W., and Lee, Y. (2008) Effects of notch position of the Charpy impact specimen on the failure behavior in heat affected zone, Journal of Materials Processing Technology, Vol. 201, pp.419-424. https://doi.org/10.1016/j.jmatprotec.2007.11.272
  7. KS B 0809 (2001) Test pieces for impact test for metallic materials, Korean Standards.
  8. KS B 0810 (2003) Method of impact test for metallic materials, Korean Standards.
  9. KS B 0821 (2007) Methods of tension and impact tests for deposited metal, Korean Standards.
  10. Lee, H.K., Kim, K.S., and Kim, C.M. (2000) Fracture resistance of a steel weld joint under fatigue loading, Engineering Fracture Mechanics, Vol. 66, pp.403-419. https://doi.org/10.1016/S0013-7944(00)00017-5
  11. Porter, D., Laukkanen, A., Nevasmaa, P., Rahka, K., and Wallin, K. (2004) Performance of TMCP steel with respect to mechanical properties after cold forming and post-forming heat treatment, International Journal of Pressure Vessels and Piping, Vol. 81, pp.867-877. https://doi.org/10.1016/j.ijpvp.2004.07.006
  12. Rossoll, A., Berdin, C., Forget, P., Prioul, C., and Marini, B. (1999) Mechanical aspects of the Charpy impact test, Nuclear Engineering Design, Vol. 188, pp.217-229. https://doi.org/10.1016/S0029-5493(99)00017-5
  13. Shin, Y.T., Kang, S.W., and Lee, H.W. (2006) Fracture characteristics of TMCP and QT steel weldments with respect to crack length, Materials Science Engineering A, Vol. 434, pp.364-371.
  14. Sreenivasan, P.R. (2006) Charpy energy-lateral expansion relations for a wide range of steels. International Journal of Pressure Vessels and Piping, Vol. 83, pp.498-504. https://doi.org/10.1016/j.ijpvp.2006.03.002
  15. Tamehiro, H., Yamada, N., and Matsuda, H. (1985) Effect of the thermo-mechanical control process on the properties of high strength low alloy steel, ISIJ International, Vol. 25, pp.54-61. https://doi.org/10.2355/isijinternational1966.25.54
  16. Tsay, L.W., Chern, T.S., Gau, C.Y., and Yang, J.R. (1999) Microstructures and fatigue crack growth of EH36 TMCP steel weldments, International Journal of Fatigue, Vol. 21, pp.857-864. https://doi.org/10.1016/S0142-1123(99)00021-3
  17. Tvergaard, V. and Needleman, A. (2004) 3D analyses of the effect of weld orientation in Charpy specimens. Engineering Fracture Mechanics, Vol. 71, pp.2179-2195. https://doi.org/10.1016/j.engfracmech.2003.12.002