DOI QR코드

DOI QR Code

숯의 유해물질과 이들의 연소 중 상변화에 대한 열분석 연구

A Thermal Study of the Harmful Chemical Species of Charcoal and Their Transformation during Combustion

  • 윤혜온 (한국기초과학지원연구원 분석연구부) ;
  • 김기현 (세종대학교 환경에너지융합학과)
  • 투고 : 2010.06.09
  • 심사 : 2011.06.27
  • 발행 : 2011.06.30

초록

숯은 제조 및 활용과정에서 연소를 통해 함유된 성분들을 방출한다. 연소는 숯의 화학조성뿐만 아니라 숯의 표면 물성변화를 초래하고 다른 성분을 흡착하기 쉬운 상태로 변형시키기도 한다. 본 연구에서는 국내에서 시판되는 4종 숯에 대하여 화학적, 열적안정성과 중금속 및 유기유해물질의 거동 연구를 수행하였다. 상온에서 $400^{\circ}C$까지 열중량분석(TGA)과 시차주사열량계를 이용한 연소에 따른 중량변화와 관련된 물질거동 연구를 수행하였다. TGA 분석결과 대부분 시료에서 $200^{\circ}C$ 이전 약 10% 중량이 감소하였으며, $200^{\circ}C$ 이전에 잔류유기물과 가스상 물질이 소실되는 것을 알려준다. 열분석에 의한 질량 감소는 천연숯과 인공숯에서 다르게 측정되었다. 천연숯 K1, C1 에서는 $400^{\circ}C$까지의 가열 반응결과 약 15% 중량 감소가 있었으며, 인공숯 K2, C2의 경우 약 20%의 중량 감소가 있는 것으로 검출되었다. 가열에 의한 $400^{\circ}C$ 이하 중량감소는 주요 유기물과 VOC의 소설에 기인하는 것으로 나타났다. 화학조성분석에 근거한 X-선 회절분석을 실시하였다. 분석결과 첨가제인 Ba이 $Ba(NO_3)_2$$BaCO_3$ 등의 형태로 $NaNO_3$와 함께 숯에 다량 존재하는 것으로 분석되었다.

Charcoal burning in the process of manufacture and ordinary use often release many constituent chemical species. As a result of open burning, the chemical composition as well as the physical properties of original material changes through the modification of surface properties of charcoal. Surface modification could be more responsible toward the outside elements for surface adsorption, it becomes easy to adsorb more toxic elements through surface adsorption. In this study, four kinds of commercially available charcoal were studied against the chemical and thermal stability along with the heavy metals and organic hazardous substances. Thermo gravimetric analysis (TGA) and differential scanning calorimetry, from room temperature to $400^{\circ}C$, were performed to study the weight loss and the changes in the behavior of those substances. According to TGA analysis, about 10% of weight loss was happened before $200^{\circ}C$. It was found that related weight loss of this temperature region may responsible to the gas phase organic matter. Natural charcoal, K1 and C1 show 15% of loss during the reaction heated to $400^{\circ}C$, while the artificial charcoal K2, C2 show the weight loss of about 20% was found. This is consistent with the main organic matter and VOC analysis results shown. Chemical composition based on the x-ray diffraction analysis was carried out. X-ray diffraction analysis reveals the existence of chemical additive in the forms of $Ba(NO_3)_2$, $BaCO_3$, and $NaNO_3$.

키워드

참고문헌

  1. Akinade, K.A., Campbell, R.M., David, A., and Compton, C. (1994) The use of a simultaneous TGA/DSC/ FT-IR system as a problem-solving tool. Journal of Materials Science, 29, 3802-3812. https://doi.org/10.1007/BF00357352
  2. Andreae, M.O. and Merlet, P. (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles, 15, 955-966. https://doi.org/10.1029/2000GB001382
  3. Bhargava, A., Dlugogorski, B.Z., and Kennedy, E.M. (2002) Emission of polyaromatic hydrocarbons, polychlorinated biphenyls and polychlorinated dibenzopdioxins and furans from fires of wood chips. Fire Safety J., 37, 659-672. https://doi.org/10.1016/S0379-7112(02)00025-5
  4. Borrego, A.G., Diego, A., and Menendez, R. (1997) Effects of Inertinite Content in Coal on Char Structure and Combustion. Energy & Fuels, 11, 702-708. https://doi.org/10.1021/ef960130m
  5. Caseiro, A., Bauer, H., Schmidl, C., Pio, C.A., and Puxbaum, H. (2009) Wood burning impact on PM10 in three Austrian regions. Atmos. Environ., 43, 2186-2195. https://doi.org/10.1016/j.atmosenv.2009.01.012
  6. Costner, P. (2005) Estimating releases and prioritizing sources in the context of the Stockholm Convention. International POPs Elimination Project. International POPs Elimination Project - IPEP. Website- www.ipen.org, 1-40.
  7. Dunham, G.E., DeWall, R.A., Constance, and L. Senior (2003) Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Processing Technology, 82, 197-213. https://doi.org/10.1016/S0378-3820(03)00070-5
  8. Estrella, C.R. and Fukuya, L. (2010) Toxic emissions from open burning. Chemosphere, 80, 193-207. https://doi.org/10.1016/j.chemosphere.2010.03.057
  9. Hower, J.C., Mercedes, M., Maroto-Valer, Taulbee, D.N., and Sakulpitakphon, T. (2000) Mercury Capture by Distinct Fly Ash Carbon Forms. Energy & Fuels, 14, 224-226. https://doi.org/10.1021/ef990192n
  10. Kabir, E., Kim, K.H., Ahn, J.W., Hong, W.F., and Sohn, J.R. (2010a) Barbecue charcoal combustion as a potential source of aromatic volatile organic compounds and carbonyls. Journal of Hazardous Materials, 174, 492-499. https://doi.org/10.1016/j.jhazmat.2009.09.079
  11. Kabir, E., Kim, K.H., and Yoon, H.O. (2010b) Trace metal contents in barbeque (BBQ) charcoal products. Journal of Hazardous Materials, 185, 1418-1425.
  12. Lyman, W.J., Reehl, W.F., and Rosenblatt, D.H. (1990) Handbook of chemical property estimation methods. American Chemical Society, 1155 Sixteenth St. NW, Washington, DC 20036, USA.
  13. Mellveen-Wright, D.R., Williams, B.C., and McMullan, J.T. (2001) A re-appraisal of woodfired combustion. Bioresour. Technol., 76, 183-190. https://doi.org/10.1016/S0960-8524(00)00129-2
  14. Mishra, P.C. and Patel, R.K. (2008) Removal of endosulfan by sal wood charcoal, J. Hazard. Mater., 152, 730-736. https://doi.org/10.1016/j.jhazmat.2007.07.091
  15. Molnar, P., Gustafson, P., Johannesson, S., Boman, J., Barregard, L., and Sallsten, G. (2005) Domestic wood burning and PM2.5 trace elements: personal exposures, indoor and outdoor levels. Atmos. Environ., 39, 2643-2653. https://doi.org/10.1016/j.atmosenv.2005.01.016
  16. Pandey, S.K., Kim, K.H., Kang, C.H., Jung, M.C., and Yoon, H. (2009) BBQ charcoal as an important source of mercury emission. Journal of Hazardous Materials, 162, 536-538. https://doi.org/10.1016/j.jhazmat.2008.05.050
  17. Pavageau, M.P., Morin, A., Seby, F., Guimon, C., Krupp, E., Pecheyran, C., Poulleau, J., and Donard, O.F. (2004) Partitioning of metal species during an enriched fuel combustion experiment. speciation in the gaseous and particulate phases. Environ Sci Technol., 38, 2252-2263. https://doi.org/10.1021/es034408i
  18. Susaya, J., Kim, K.H., Ahn, J.W., Jung, M.C., and Kang, C.H. (2010) BBQ charcoal combustion as a potential source of trace metal exposure to humans, Journal of Hazardous Materials, 176, 932-937. https://doi.org/10.1016/j.jhazmat.2009.11.129
  19. Yoon H.O., Choe U., and Kim K.H. (2010) Characterization of Barbecue Charcoal Before & After the Combustion. Earth & Environmental Research, 4, 1-10.

피인용 문헌

  1. Effect of charcoal type on the formation of polycyclic aromatic hydrocarbons in grilled meats vol.343, pp.None, 2011, https://doi.org/10.1016/j.foodchem.2020.128453