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Abstract

In this paper, we develop the reference priors for the scale and shape parameters in
the nonregular Pareto distribution. We derive the reference priors as noninformative
priors and prove the propriety of joint posterior distribution under the general priors
including reference priors in the order of inferential importance. Through the simula-
tion study, we compare the reference priors with respect to coverage probabilities of
parameter of interest in a frequentist sense.

Keywords: Nonregular case, Pareto distribution, reference prior, scale parameter, shape
parameter.

1. Introduction

The Pareto distribution provides a statistical model which has an extensive variety of
applications. It has been found in describing distributions of studies of income, property
values, insurance risk, stock prices fluctuations, migration, size of cities and firms, word
frequencies, occurrences of natural resources, business failures, service time in queuing sys-
tems, and error clustering in communications circuits and lifetime data, etc. (Arnold and
Press, 1983; Ferndndez, 2008).

The Pareto distribution is reverse J-shaped and positively skewed with a decreasing hazard
rate. Although this distribution was originally applied to analyzing certain socio-economic
and natural phenomena with observations in long tails, this has been used potentially for
modeling reliability and life time data as well (Arnold and Press, 1983). The Pareto dis-
tribution has been used by many authors in a Bayesian viewpoint (e.g., Arnold and Press,
1983, 1989; Geisser, 1984, 1985; Lwin, 1972; Nigm and Hamdy, 1987; Tiwari et al., 1996;
Ko and Kim, 1999; Ferndndez, 2008; Kim et al., 2009; Kang, 2010).

Arnold and Press (1989) studied the Bayesian estimation problem using the independent
conjugate prior and modified Lwin prior. Soliman (2001) studied the Bayesian estimation
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of Pareto distribution with the scale and the shape parameters using subjective priors such
as conjugate priors and gamma-exponential priors. Many authors, in a Bayesian viewpoint,
used the subjective priors such as a conjugate prior. However, in the absence of prior infor-
mation or past data, Bayesian methods rely on the objective priors or the noninformative
priors. Lee et al. (2003) developed the probability matching priors in Pareto distribution.
But these authors have not considered the reference priors.

Reference priors initiated by Bernardo (1979) and studied intensively by Berger and Beran-
rdo (1989, 1992) are priors which give as little influence as possible to posterior distribution
in the sense of entropy. Many researchers have paid much attention to developing reference
priors in many statistical models, but many of the researches were concentrated around
regular family of distributions. However, nonregular families, such as the uniform or shifted
exponential distributions, are also important in many practical problems. The method de-
veloped for regular families of distributions can not be applied to nonregular distributions.
Ghosal and Samanta (1997) developed the reference priors for the case of one parameter
families of discontinuous densities. And Ghosal (1997) derived the reference priors for the
multiparameter nonregular cases where the family of densities has discontinuities at some
points, which depend on one component of the parameter, while the family is regular with
respect to the other parameters.

Nonregular Pareto distribution is very useful in analyzing data from economy or medical
study. Arnold and Press (1989) analyzed annual income data using Pareto distribution. As
mentioned above, they used various priors to describe annual income. Soliman (2001) used
Pareto distribution for the purpose of analyzing Stanford heart translation data. Despite
the usefulness of Pareto distribution, there is no result about reference priors for Bayesian
analysis. Therefore, we feel a strong necessity for developing reference priors in this distri-
bution.

Let X be a random variable distributed as the Pareto distribution with a shape parameter
a and a scale parameter 8. Denote it as X ~ P(«, 8). This paper focuses on developing the
reference priors for the scale and the shape parameters.

The outline of the remaining sections is as follows. In Section 2, we develop reference
priors for the scale and the shape parameters. In Section 3, we provide that the propriety
of the posterior distribution for the general prior including the reference priors. In Section
4, simulated frequentist coverage probabilities under the derived priors are given for the
purpose of comparing developed priors.

2. The reference priors

Reference priors introduced by Bernardo (1979), and extended further by Berger and
Bernardo (1992) have become very popular over the years for the development of nonin-
formative priors. Ghosal (1997) derived the reference prior in sense of Bernardo (1979) for
multiparameter nonregular cases. In this section, we derive the reference priors for different
groups of orderings of parameters by following Ghosal (1997).

Let X denote a random variable distributed as the Pareto distribution P(«, 5). Then the
probability density function (p.d.f.) is given by

flzla, B) = af%z= Y 2> 5>0a>0. (2.1)
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First, we derive the reference priors when the scale parameter 3 is the parameter of interest.
The reference priors can be developed by considering a sequence of compact subsets of the
parameter space and taking the limit of a sequence of priors as these compact subsets fill out
of the parameter space. The compact subsets were taken to be Cartesian products of sets
of the form « € [a1,b1]. The limit a; will tend to 0 and b; will tend to co. Here and below,
a subscripted () denotes a function that is constant and does not depend on any parameter,
but any @@ may depend on the ranges of the parameters.

The conditional reference prior for a given g is

m(alB) = [det F(B,a)]> = a™?, (2.2)

where the F (8, «) is given by
F(B,a) =a 2

Here F(8,a) = {4J11(B8, )}, and Jy; is defined by
Jll(ﬁ7a) :/ga(x;ﬁ,a)de,

where g, = dg/0c, g = f2, and f is the p.d.f. (2.1). Thus the normalizing constant K;(f)
of the reference prior 7(a|8) is given by

by -1 by -1
Ki(B) = (/ [detF(ﬁﬂ)]%’dOf) = (/ 04—10504) = [log(b1/a1)] ™", (23)

and so, the p.d.f. of the conditional reference prior of « given (3 is
pi(alB) = Ki(B)m(alB) = [log(bi/a1)] et (2.4)
Thus the marginal reference prior for S is given by

by
m(B) = exp {/ pi(aB) log c(ﬁ,a)da} = ﬁ_lQ(ahbl), (2.5)

1

where ¢(f,a) = Es [0log f/08] = a/B. Therefore the reference prior for (5, a) when 3 is
parameter of interest is given by

~ gy | EBmB) ]
m(30) = im | RO (o))
x B ta™t, (2.6)

where 3y is a fixed point. When both 3 and « are parameters of interest, the reference prior
for (8, @) is given by

m2(B, @) = ¢(B, o) [det F (B, )] 2
x 2.7)
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Also the reference prior for (8,«) based on the appropriate penalty term of Ghosh and
Mukerjee (1992) (and also see Ghosal, 1997) when § is parameter of interest given by

m3(8,a) = c¢(B,a) = B (2.8)

Remark 2.1 Lee et al. (2003) developed the probability matching priors for 8. The
developed reference prior 77 is a probability matching prior, but the reference priors 7y and
w3 do not satisfy a probability matching criterion.

Next, we derive the reference priors when the shape parameter « is the parameter of
interest. The compact subsets were taken to be Cartesian products of sets of the form
B € [a1,b1]. The reference prior for § given « is

(Bla) = c(f, a) = g (2.9)

The normalizing constant Kj(«) of the reference prior 7(8|a) is given by

Ki(a) = (/ 1c(5,a)d6> _ </ 1a5_1d6> — o log(b/a)]"Y,  (2.10)

and so we obtain

pi(Bla) = Ki(a)m(Bla) = [log(bi /a1)] 57" (2.11)
Thus the marginal reference prior for « is given by
b1
m(a) = exp {/ pu(Bla)[det F(ﬁ,a)]%dg} =a . (2.12)

Therefore the reference prior for (a, 8) when « is parameter of interest is given by
Ki(a)m(a) }

—————— I (Bl

l:Kl(aO)Wl(ao) (Bled)

xa 17t (2.13)

m(e, B) = llggo

where «q is a fixed point. Also when both « and 3 are parameters of interest, the reference
prior for («, ) is given by

ma(a, B) = (3, a)[det F(8, )2
xp (2.14)

When « is the parameter of interest, the reference prior for (a, §) based on the appropriate
penalty term of Ghosh and Mukerjee (1992) (and also see Ghosal, 1997) is given by
m3(a, B) = [det F(8,a)]7 = a~ L. (2.15)

Remark 2.2 Lee et al. (2003) developed the probability matching priors for . The de-
veloped reference priors m; and 73 satisfy a probability matching criterion, but the reference
prior 7y is not a probability matching prior.
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3. Implementation of the Bayesian procedure

We investigate the propriety of posteriors for a general class of priors which includes the
reference priors (2.6), (2.7), (2.8), (2.13), and (2.15). We consider the class of priors

Ty(a, B) o a™@B70. (3.1)

where ¢ > 0 and 0 < b < 1. The following general theorem can be proved.

Theorem 3.1 The posterior distribution of («, 8) under the general prior (3.1) is proper if
n—a>0.

Proof: Under the general prior (3.1), the joint posterior for «, 5 given x is
m(a, B|x) oc a"egre—t H x;“. (3.2)
i=1

Then, integrating with respect to 3 in (3.2), we have the posterior

" (na —b+1)"! (ﬁ)ﬂ 3.3
m(alx) < a""*(na +1) Zl;[l . , (3.3)
where z = min{xy, -+ ,z,}. Therefore
> n—a—1 Ly
m(a|x) <n la H ( ) 00, (3.4)
0
if n — a > 0. This completes the proof. O

Theorem 3.2 The marginal posterior distribution of « based on the general prior (3.1) is

"=a(na — b+ 1)} (ﬁ)_a 3.5
m(alx) oc o (na — b+ 1) £[1 ~) (3.5)
where z = min{xy,---,x,}. Also, the marginal posterior distribution of 8 based on the

general prior (3.1) is

—(n—a+1)
m(B|x) x B~ lng ] . (3.6)

Note that normalizing constants for the marginal densities of a and [ require a one
dimensional integration. Therefore, we can have the marginal posterior densities of o and
B, so we compute the marginal moments of o and 8. In Section 4, we investigate the
frequentist coverage probabilities for the shape and the scale parameters under the reference
priors 71, mo and ms, respectively.
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4. Numerical study

We investigate the frequentist coverage probability by investigating the credible intervals
of the marginal posteriors densities of « and 8 under the noninformative priors 7 given in
Section 3 for several configurations (a, ) and n. That is to say, the frequentist coverage
of a 100(1 — n)%th posterior quantile should be close to 1 — 1. This is done numerically.
Table 4.1 and 4.2 give numerical values of the frequentist coverage probabilities of 0.05 (0.95)
posterior quantiles for the proposed priors. The computation of these numerical values is
based on the following algorithm for any fixed true («, 8) and any prespecified value 1. Here
7 is 0.05 (0.95).

Let a™(n|x) be the posterior n-quantile of o given x. That is to say, F(a™(n|x)| x) =7,
where F'(-|x) is the marginal posterior distribution of «. Then the frequentist coverage
probability of this one sided credible interval of « is

P(a’ﬁ)(n,oz) = P(a’g)(o <a< a”(77|x)). (41)

Table 4.1 Frequentist coverage probabilities of 0.05 (0.95) posterior quantiles for a

« B n T T2 T3
0.1 0.1 5 0.046 (0.952) 0.138 (0.983) 0.092 (0.979)
10 0.051 (0.952) 0.098 (0.976) 0.069 (0.967)
20 0.050 (0.947) 0.080 (0.968) 0.058 (0.956)
1.0 5 0.049 (0.954) 0.135 (0.983) 0.093 (0.978)
10 0.053 (0.951) 0.101 (0.973) 0.072 (0.966)
20 0.051 (0.951) 0.079 (0.968) 0.059 (0.958)
10.0 5 0.051 (0.951) 0.138 (0.982) 0.095 (0.977)
10 0.048 (0.951) 0.099 (0.975) 0.068 (0.967)
20 0.045 (0.951) 0.076 (0.970) 0.052 (0.959)
1.0 0.1 5 0.054 (0.951) 0.139 (0.980) 0.063 (0.962)
10 0.054 (0.948) 0.097 (0.974) 0.056 (0.952)
20 0.049 (0.949) 0.080 (0.968) 0.050 (0.951)
1.0 5 0.046 (0.951) 0.134 (0.981) 0.056 (0.961)
10 0.046 (0.950) 0.098 (0.976) 0.050 (0.953)
20 0.048 (0.950) 0.077 (0.969) 0.049 (0.951)
10.0 5 0.048 (0.949) 0.138 (0.980) 0.058 (0.959)
10 0.050 (0.953) 0.096 (0.975) 0.053 (0.957)
20 0.049 (0.948) 0.081 (0.966) 0.050 (0.949)
10.0 0.1 5 0.052 (0.948) 0.136 (0.980) 0.052 (0.949)
10 0.044 (0.950) 0.094 (0.974) 0.044 (0.951)
20 0.051 (0.951) 0.082 (0.969) 0.051 (0.951)
1.0 5 0.051 (0.952) 0.142 (0.981) 0.051 (0.953)
10 0.052 (0.952) 0.101 (0.975) 0.053 (0.953)
20 0.052 (0.949) 0.084 (0.968) 0.052 (0.949)
10.0 5 0.049 (0.952) 0.134 (0.983) 0.050 (0.954)
10 0.052 (0.950) 0.105 (0.974) 0.053 (0.950)
20 0.048 (0.952) 0.077 (0.969) 0.048 (0.952)

Also, we can give the frequentist coverage probability of this one sided credible interval
of B by the above method. The estimated P, 5)(1, ) and Pg o (1, ) when n = 0.05(0.95)
are shown in Tables 4.1 and 4.2, respectively. In particular, for fixed (v, 8), we take 10,000
independent random samples of X = (X3, -+, X,,) from the model (2.1).
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For the cases presented in Table 4.1, we see that the reference prior m; matches the
target coverage probability much more accurately than do the reference priors mo and 73
for values of (a, 8) and values of (ny,ns). Also, the reference prior 73 gives good coverage
probabilities for the sample sizes 10 and 20. Note that the reference priors m and 73 are
probability matching priors. The results of the table are not much sensitive to change of the
values of («, 8) under the reference prior 1. Thus, we recommend the use of the reference
prior 1 in the sense of asymptotic frequentist coverage property for the shape parameter a.

For the cases presented in Table 4.2, we see that the reference prior m; matches the target
coverage probability much more accurately than do the reference priors o and 73 for values
of (o, 5) and values of (ny,n2). Note that the reference prior 7; is a probability matching
prior, and the results of the table are not much sensitive to change of the values of (a, §).
Thus, we recommend the use of the reference prior 7y in the sense of asymptotic frequentist
coverage property for the scale parameter (.

Table 4.2 Frequentist coverage probabilities of 0.05 (0.95) posterior quantiles for 8

B « n st

0.1 0.1 5 0.048 (0.952) 0.088 (0 961) 0.133 (0 969)
10 0.051 (0.951) 0.069 (0.955) 0.087 (0.959)

20 0.054 (0.946) 0.063 (0.949) 0.070 (0.952)

1.0 5 0.047 (0.944) 0.091 (0.955) 0.135 (0.962)

10 0.051 (0.952) 0.068 (0.957) 0.088 (0.961)

20 0.049 (0.948) 0.058 (0.950) 0.066 (0.952)

10.0 5 0.050 (0.950) 0.093 (0.960) 0.137 (0.966)

10 0.051 (0.948) 0.068 (0.953) 0.086 (0.957)

20 0.048 (0.951) 0.056 (0.954) 0.065 (0.957)

1.0 0.1 5 0.051 (0.949) 0.095 (0.959) 0.140 (0.966)
10 0.047 (0.948) 0.064 (0.952) 0.082 (0.956)

20 0.049 (0.951) 0.057 (0.953) 0.065 (0.956)

1.0 5 0.047 (0.951) 0.087 (0.961) 0.133 (0.968)

10 0.050 (0.948) 0.069 (0.955) 0.086 (0.959)

20 0.048 (0.952) 0.057 (0.955) 0.066 (0.958)

10.0 5 0.051 (0.950) 0.093 (0.960) 0.134 (0.967)

10 0.049 (0.950) 0.065 (0.954) 0.084 (0.959)

20 0.048 (0.950) 0.058 (0.952) 0.067 (0.954)

10.0 0.1 5 0.051 (0.946) 0.093 (0.956) 0.140 (0.964)
10 0.050 (0.950) 0.069 (0.955) 0.088 (0.958)

20 0.047 (0.954) 0.056 (0.957) 0.064 (0.959)

1.0 5 0.052 (0.948) 0.093 (0.959) 0.138 (0.966)

10 0.049 (0.948) 0.068 (0.953) 0.088 (0.957)

20 0.055 (0.947) 0.063 (0.950) 0.071 (0.953)

10.0 5 0.052 (0.950) 0.095 (0.960) 0.141 (0.965)

10 0.048 (0.949) 0.068 (0.954) 0.084 (0.958)

20 0.049 (0.949) 0.057 (0.953) 0.065 (0.955)

5. Concluding remarks

In the nonregular Pareto distribution, we have found the reference priors for the shape
and the scale parameters. For each parameter, we derived the reference priors when « or g
are the parameter of interest, and both a and g are parameters of interest. We showed that
the reference prior 7; for each parameter performs better than do the reference priors mo and
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73, in matching the target coverage probabilities. Also, we revealed that the reference prior
w1 satisfies a probability matching criterion. Thus, we recommend the use of the reference
prior 71 for the Bayesian inference of the shape and the scale parameters.
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