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Estimating reliability in discrete distributions
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Abstract
We shall introduce a general probability mass function which includes several dis-

crete probability mass functions. Especially, when the random variable X is Poisson,
binomial, and negative binomial random variables as some special cases of the in-
troduced distribution, the maximum likelihood estimator (MLE) and the uniformly
minimum variance unbiased estimator (UMVUE) of the probability P (X ≤ t) are
considered. And the efficiencies of the MLE and the UMVUE of the reliability are
compared each other.

Keywords: Binomial, maximum likelihood estimator, negative binomial, Poisson, uni-
formly minimum variance unbiased estimator.

1. Introduction

Many authors have considered a right tail probability in continuous distributions for the
reliability theory. Lee and Won (2006) considered inference on reliability in an exponentiated
uniform distribution. Woo (2007, 2008) studied a reliability in two independent half normal
distributions and Levy-uniform distributions. Moon and Lee (2009) considered an inference
on the reliability in two independent gamma random variables. Lee and Lee (2010) con-
sidered reliability in two independent right truncated Rayleigh distributions. Ali and Woo
(2010) studied estimation of tail probability and reliability in exponentiated Pareto case.

Since the curtate future lifetime random variable X has non-negative integer values, it is
natural in actuarial studies to consider the right tail probability of discrete random variables
to apply a reliability to evaluation of life insurance premiums (see, Bowers et al., 1997).

Because reliability R(t) = P (X > t) = 1−P (X ≤ t) is a monotone function of P (X ≤ t),
an inference on the reliability is equivalent to an inference on P (X ≤ t) in McCool (1991),
and hence instead of an inference on the reliability, it’s sufficient for us to consider an
inference on P (X ≤ t) .

In this paper, We introduce a general probability mass function which includes several
discrete probability mass functions. Especially, when the random variable X is Poisson,
binomial, and negative binomial random variables as some special cases of the introduced
distribution, the MLE and the UMVUE of the probability P (X ≤ t) are considered. And
the efficiencies of the MLE and the UMVUE of the reliability are compared each other.
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2. Reliability of discrete random variables

We propose the probability mass function (pmf) of a discrete random variable X as follows:

P (X = j) = αj · θj/f(θ), j = 0, 1, 2, · · · , a, θ > 0 and αj > 0, (2.1)

where a is a infinite or a positive integer, f(θ) ≡
∑a
j=0 αj ·θj of which

∑∞
j=0 αj ·θj converges

surely for 0 < θ < 1 .
From the pmf (2.1) of a random variable X, we get the following special cases.

Example 2.1 (i) (binomial) If a = n and αj =

(
n
j

)
in (2.1), then f(θ) = (1 + θ)n and

hence X follows a binomial distribution with parameters n and p = θ/(1 + θ) for θ > 0 .

(ii) (Poisson) If a =∞ and αj = 1/j! in (2.1), then f(θ) = eθ and hence X follows a Poisson
distribution with mean θ > 0 .

(iii) (geometric) If a = ∞ and αj = 1 in (2.1), then f(θ) = 1/(1 − θ) for 0 < θ < 1 and
hence X follows a geometric distribution with p = 1− θ .

(iv) (negative binomial) If a =∞ and αj =

(
r + j − 1

j

)
in (2.1), then f(θ) = (1− θ)−r for

0 < θ < 1 and hence X follows a negative binomial distribution with a positive integer r
and p = 1− θ .

From the pmf (2.1), the moment generating function (mgf) MX(t) = E(etX) and the
factorial moment generating function (fmgf) p(t) = E(tX) are obtained as following:

Proposition 2.1 (a) The mgf and the fmgf of a random variable X having the pmf (2.1)
are

MX(t) =
f(θet)

f(θ)
and p(t) = f(θ · t)/f(θ).

(b) The kth factorial moment ηX(k) = E[X(X − 1) · · · (X − k+ 1)] of a random variable X
is

ηX(k) =
θk

f(θ)
·
dkf(θ)

dθk
, k = 1, 2, 3, · · · , (2.2)

where
∑∞
j=0 P (X = j) · tj converges surely for |t| ≤ 1.

Proof: (a) MX(t) =
∑a
j=0 e

tjαjθ
j/f(θ) =

∑a
j=0 αj(e

tθ)j/f(θ) = f(θet)/f(θ), where the

last equality comes from the definition of f(θ). Hence, p(t)=E(tX)=MX(ln t)=f(θ·t)/f(θ).

(b) The kth factorial moment of a random variable X is
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ηX(t) = p(k)(1) =
dkp(t)

dtk

∣∣∣∣
t=1

=

a∑
j=0

j(j − 1)(j − k + 1)αjθ
j/f(θ) =

θk

f(θ)

a∑
j=0

αj · j(j − 1)(j − k + 1)θj−k

=
θk

f(θ)

dk

dθk

 a∑
j=0

αjθ
j

 =
θk

f(θ)

dkf(θ)

dθk
,

which completes the proof. �

From the result (2.2), the mean and the variance of a random variable X having the pmf
(2.1) are obtained as follows:

E(X) = θ ·
f ′(θ)

f(θ)
and V ar(X) = θ2 ·

d

dθ

(
f ′(θ)

f(θ)

)
+ E(X), (2.3)

where f ′(θ) denotes a derivative of f(θ).
By using the result (2.3) and f(θ) in (i)-(iv) of Example 2.1, we get the following means

and variances of several discrete random variables in Example 2.2.

Example 2.2 (i) (binomial) Since f(θ) = (1 + θ)n, E(X) = n · θ/(1 + θ) and V ar(X) =
nθ/(1 + θ)2.

(ii) (Poisson) Since f(θ) = eθ, E(X) = θ and V ar(X) = θ for θ > 0.

(iii) (geometric) Since f(θ) = 1/(1 − θ), E(X) = θ/(1 − θ) and V ar(X) = θ/(1 − θ)2 for
0 < θ < 1.

(iv) (negative binomial) Since f(θ) = (1 − θ)−r, E(X) = r · θ/(1 − θ) and V ar(X) =
r · θ/(1− θ)2 for 0 < r < 1 and r is a positive integer.

For a positive random variable X, we define the negative moment of order n by E(X−n),
where n is a positive integer, which its moment can be applied to evaluation of life insurance
premiums in Bowers et al. (1997). And hence we obtain negative moment of order 1.

Proposition 2.2 If a random variable X has the pmf (2.1), then

E

(
1

X + 1

)
=

1

θ · f(θ)
·
∫
f(θ)dθ.

Proof : E

(
1

X + 1

)
=

a∑
i=0

1

j + 1
αjθ

j/f(θ) =
1

θf(θ)

a∑
j=0

αj ·
θj+1

j + 1

=
1

θf(θ)

a∑
j=0

αj ·
∫
θjdθ =

1

θf(θ)

∫  a∑
j=0

αjθ
j

 dθ

=
1

θ · f(θ)
·
∫
f(θ)dθ.

Therefore, we have done. �
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From Proposition 2.2 and Example 2.2 we obtain the following Example 2.3.

Example 2.3 (i) (binomial) Since f(θ) = (1 + θ)n, E(1/(1 +X)) = (1 + θ)/((n+ 1)θ).
(ii) (Poisson) Since f(θ) = eθ, E(1/(1 +X)) = 1/θ.
(iii) (geometric) Since f(θ) = 1/(1− θ), E(1/(1 +X)) = −(1− θ) ln(1− θ)/θ for 0 < θ < 1.
(iv) (negative binomial) Since f(θ) = (1− θ)−r, E(1/(1 +X)) = (1− θ)/(θ(r−1)) for r > 1.

Next, we consider estimations of the reliability of several discrete random variables as
special cases of the pmf (2.1).

2.1. Poisson distribution

Let X1,X2, · · · , Xn be independent Poisson random variables with the mean parameter
λ > 0. Then S =

∑n
i=1Xi is the complete sufficient statistics for λ > 0.

Define the following statistic u(X) as the following: For given t0 > 0,

u(X) =

{
0 if X > t0

1 if X ≤ t0
.

Then u(X) is an unbiased estimator of P (X ≤ t0) and hence from Lehmann-Scheffe The-
orem, E(U(X)|S) is the UMVUE of P (X ≤ t0). Since the conditional density of X1 given
S = s can be obtained as

P (X1 = t|S = s) =

(
s
t

)(
1−

1

n

)s−t(
1

n

)t
, t = 0, 1, 2, · · · , s,

the UMVUE of P (X ≤ t0) is obtained as

t0∑
t−0

(
S

t

)
(1− 1/n)S−t(1/n)t. (2.4)

Especially if 0 < t0 < 1, then P (X ≤ t0) = e−λ and hence, from (2.4) it’s a well-known that

the UMVUE of P (X ≤ t0) = e−λ is (1−
1

n
)
∑n

i=1Xi .

From the mgf of a Poisson random variable, the variance of the UMVUE is obtained by

e−2λ[eλ/n − 1]. (2.5)

If 0 < t0 < 1, the MLE of P (X ≤ t0) = e−λ is

P̂ (X ≤ t0) = exp(−λ̂) = exp

(
−

n∑
i=1

Xi/n

)
.

Hence, the first and 2nd moments of the MLE P̂ (X ≤ t0) are obtained by

E[P̂ (X ≤ t0)] = exp(nλ(exp(−1/n)− 1))

and

E[P̂ 2(X ≤ t0)] = exp(nλ(exp(−2/n)− 1)) (2.6)
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Table 2.1 MSE of the UMVUE and the MLE of P (X ≤ t0)
in a Poisson case when λ = 1 and 0 < t0 < 1

n 10 20 30
UMVUE .01423 .00694 .00459
MLE .04737 .00701 .00462

From the results (2.5) and (2.6), Table 2.1 provides mean squared errors (MSE) of the
UMVUE and the MLE of P (X ≤ t0) = e−λ for λ = 1 and 0 < t0 < 1.

From Table 2.1 and an equivalence between inferences of the probability P (X ≤ t) and
the reliability in McCool (1991), in the Poisson model with λ = 1 when 0 < t0 < 1, the
UMVUE of the reliability performs better than the MLE in the sense of MSE.

2.2. Binomial distribution

Let X1,X2, · · · , Xn be independent random variables each having distributed as the bi-
nomial with parameter (k, p), where k is assumed known positive integer. Then it’s a well
known that S =

∑n
i=1Xi is complete and sufficient statistics for p.

By the similar manner as like in Section 2.1, we obtain the UMVUE of P (X ≤ t0) by

t0∑
i=1

(
k
t

)
·
(

(n− 1)k
S − t

)/(
nk
S

)
, n > 1. (2.7)

The MLE of P (X ≤ t0) is given by

P̂ (X ≤ t0) =

t0∑
t=0

(
k

t

)
· p̂t(1− p̂)k−t, p̂ =

1

kn

n∑
i=1

Xi. (2.8)

Especially if 0 < t0 < 1, then P (X ≤ t0) = (1− p)k, and hence from (2.7), the UMVUE of
P (X ≤ t0) = (1− p)k is given as(

(n− 1)k
S

)/(
nk
S

)
if S ≤ (n− 1)k. (2.9)

The MLE of P (X ≤ t0) = (1− p)k is given by

P̂ (X ≤ t0) = (1− p̂)k. (2.10)

From (2.9) and (2.10), if k = 1, that is, each Xi is a Bernoulli random variable, it’s a
well-known that the UMVUE and the MLE of P (X ≤ t0) are the same when 0 < t0 < 1.

From the results (2.9) and (2.10), Table 2 provides the simulated MSE of the UMVUE
and the MLE of P (X ≤ t0) for k =5 and 0 < t0 < 1.

From Table 2.2 and an equivalence between inferences of probability P (X ≤ t) and the
reliability in McCool (1991), in the binomial model with p =0.25, 0.5 and 0.75 for k =5 and
0 < t0 < 1, the MLE of the reliability performs better than the UMVUE in the sense of
MSE.
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Table 2.2 Simulated MSE of the UMVUE and the MLE of
P (X ≤ t0) in the binomial case when k=5 and 0 < t0 < 1

n
p

0.25 0.5 0.75

10
MLE .01034 .000743 .0000048

UMVUE .01327 .001396 .0000181

20
MLE .00494 .000305 .0000014

UMVUE .00563 .000438 .0000033

30
MLE .00324 .000159 .0000008

UMVUE .00413 .000273 .0000016

2.3. Negative binomial distribution

The probability mass function of a negative binomial random variable with parameters r
and p is given by

f(x) =

(
x+ r − 1

x

)
pr(1− p)x, x = 0, 1, 2, · · · .

Let X1,X2, · · · , Xn be independent random variables each Xi having distributed as the
negative binomial with parameter (ri, p) for each i, where ri is assumed known positive
integer and 0 < p < 1. Then it’s a well known that S =

∑n
i=1Xi is a complete sufficient

statistics for p.
By the similar manner as like in Section 2.1, the UMVUE of P (X ≤ t0) in the negative

binomial case is obtained by

t0∑
t=0

(
r1 + t− 1

t

)
·
(
S − t+

∑n
i=2 ri − 1

S − t

)/(
S +

∑n
i=1 ri − 1

S

)
. (2.11)

The MLE of P (X ≤ t0) is given by

P̂ (X ≤ t0) =

t0∑
t=0

(
t+ r − 1

t

)
p̂r(1− p̂)t,

where p̂ = n/(n+
∑n
i=1Xi).

Especially if 0 < t0 < 1 and each ri = 1, then P (X ≤ t0) = p and hence from (2.11), the
UMVUE of P (X ≤ t0) = p is

(n− 1)/

(
n− 1 +

n∑
i=1

Xi

)
(2.12)

and the MLE of P (X ≤ t0) = p is given by

p̂(X ≤ t0) = p̂ = n/

(
n+

n∑
i=1

Xi

)
. (2.13)
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Table 2.3 Simulated MSE of the UMVUE and the MLE of P (X ≤ t0)
in the negative binomial case when 0<t0<1 and each ri=1

n
p

0.25 0.5 0.75

10
MLE .00635 .014149 .013521

UMVUE .00548 .013805 .014745

20
MLE .00265 .006693 .006917

UMVUE .00242 .006569 .007205

30
MLE .00123 .004387 .004640

UMVUE .00101 .004307 .004765

From the results (2.12) and (2.13), Table 2.3 provides simulated MSE of the UMVUE and
the MLE of P (X ≤ t0) = p in the negative binomial case when 0< t0 <1 and each ri =1.

From Table 2.3 and an equivalence between inferences of probability P (X ≤ t) and the
reliability in McCool (1991), in the negative binomial model with p =0.25 and 0.5 for
0 < t0 < 1, the UMVUE of the reliability performs better than the MLE in the sense
of MSE. And vice versa when the negative binomial model has p =0.75 for 0 < t0 < 1.

3. Conclusion

In this paper, we introduce a general probability mass function which includes several
discrete probability mass functions. Especially, when the random variable X is Poisson,
binomial, and negative binomial random variables as some special cases of the introduced
distribution, we obtain the MLE and the UMVUE of the probability P (X ≤ t).

Through the numerical or simulated MSE, we can observe as follows;
In the Poisson model with λ = 1 when 0 < t0 < 1, the UMVUE of the reliability performs

better than the MLE in the sense of MSE. In the binomial model with p =0.25, 0.5 and 0.75
for k =5 and 0 < t0 < 1, the MLE of the reliability performs better than the UMVUE in
the sense of MSE. And in the negative binomial model with p =0.25 and 0.5 for 0 < t0 < 1,
the UMVUE of the reliability performs better than the MLE in the sense of MSE. And vice
versa when the negative binomial model has p =0.75 for 0 < t0 < 1.
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