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Abstract

Properties of multivariate Shewhart and CUSUM charts for monitoring variance-
covariance matrix, specially focused on correlation coefficient components, are inves-
tigated. The performances of the proposed charts based on control statistic Lawley-
Hotelling Vi and likelihood ratio test (LRT) statistic TVi are evaluated in terms of
average run length (ARL). For monitoring correlation coefficient components of dis-
persion matrix, we found that CUSUM chart based on TVi gives relatively better
performances and is more preferable, and the charts based on Vi perform badly and
are not recommended.
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1. Introduction

In many situations, there exist multiple quality variables to define the quality of output
rather than a single quality variable. And shifts in correlation coefficients of quality vari-
ables are important when the strength of linear relationship between two or more variables
largely affect the quality of product. Especially in chemical industry, changing in correlation
coefficients of quality variables in production process is often important.

The quality of a product is often characterized by joint levels of several quality char-
acteristics. Because it is inappropriate to use individual charts to detect any changes of
each quality variable or each process parameter in this case, a multivariate quality control
procedure for simultaneously monitoring correlated variables is needed. The multivariate
procedure to quality control was first introduced by Hotelling (1947) and became popular
in recent years. Jackson (1959) and Ghare and Torgersen (1968) presented multivariate
Shewhart chart based on Hotelling’s T 2 statistic. Woodall and Ncube (1985) extended the
univariate CUSUM procedure to the multivariate case for monitoring mean vector of quality
variables.
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Up to the present, multivariate control charts have been widely used for monitoring pro-
cess mean vector. But, relatively little attention has been given to the use of multivariate
charts for monitoring variance-covariance matrix. In this paper, we propose several different
control statistics and evaluate numerical performances of Shewhart and CUSUM charts for
monitoring the dispersion matrix Σ, specially correlation coefficients of correlated quality
variables.

2. Evaluating control statistics

Suppose that the production process of interest has p quality variables represented by
the random vector X = (X1, X2, · · · , Xp)

′, p = 2, 3, · · · , and X has a multivariate nor-
mal distribution Np(µ,Σ). At each sampling time i, we obtain an independent random

sample vector Xi, where Xi = (X ′i1, · · · , X
′
∈)′ is a sample of observations and Xij =

(Xij1, Xij2, · · · , Xijp)
′. Thus Xi is np× 1 vector.

Let θ0 = (µ
0
,Σ0) be the known target values for the process parameters µ

0
of p quality

variables and Σ0 is represented as

µ
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=
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...
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,
where the target covariance component of Xr and Xs is σrs0 = ρrs0σr0σs0 for r, s =
1, 2, · · · , p.

In univariate case, the process dispersion σ2 can be monitored by S2 chart under normality
assumption, where S2 denotes an unbiased sample variance for a random sample of size n
from a process. The S2 chart signals for large values of S2

i or equivalently for large values of
Ti = (n− 1)S2

i /σ
2
0 where σ2

0 is target value of the process dispersion σ2 and S2
i is obtained

at sampling time i.
For multivariate case, one possible multivariate version of Ti is

Vi =

n∑
j=1

(Xij −Xi)
′Σ−1

0 (Xij −Xi) = tr(AiΣ
−1
0 ) (2.1)

where Ai =
∑n
j=1(Xij −Xi)(Xij −Xi)

′.
The distribution of the Lawley-Hotelling statistic Vi was studied by Lawley (1938) and

Hotelling (1951). When the process is in-control, the dispersion matrix Σ is Σ0 and the
control statistic Vi has a chi-squared distribution with (n−1)p degrees of freedom. Hotelling
(1947) proposed that the statistic Vi can be used to monitor the process dispersion matrix
of p quality variables.

Hui (1980) proposed the sample generalized variances for monitoring the process dispersion
matrix using the following statistic Li as

Li =
|Si|
|Σ0|

(2.2)
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where p × p sample dispersion matrix Si is Ai/(n − 1). It is known that the statistic√
n− 1(Li−1) is asymptotically normally distributed with mean 0 and variance 2p (Ander-

son, 1958). Alt (1982) also proposed the use of sample generalized variance |Si| to monitor
dispersion matrix Σ.

Another control statistic for monitoring Σ can be obtained from the likelihood ratio test
(LRT) statistic for testing H0 : Σ = Σ0 vs H1 : Σ 6= Σ0 where target mean vector µ

0
of

the quality variables is known, since the general statistical quality control procedures can
be considered as a series of repetitive significant tests.

The region above the UCL corresponds to the LRT rejection region. For the ith sample,
likelihood ratio λ can be expressed as

λ = n−np/2 · |AiΣ−1
0 |n/2 · exp

[
−

1

2
tr(Σ−1

0 Ai) +
1

2
np

]
.

Let TVi be −2 lnλ. Then

TVi = tr(AiΣ
−1
0 )− n ln|Ai|+ n ln|Σ0|+ np lnn− np. (2.3)

Hence, TVi can be used as the control statistic for monitoring Σ.

3. Multivariate control charts

3.1. Multivariate Shewhart charts

Shewhart chart is widely used to display sample data from a process for the purpose of
determining whether a production process is in-control, for bringing an out-of-control pro-
cess into in-control, and for monitoring a process to make sure that it stays in-control. A
Shewhart chart has a good ability to detect large changes in monitored parameter quickly.
The basic Shewhart chart, although simple to understand and apply, uses only the informa-
tion in the current sample and is thus relatively inefficient in detect small shifts in control
parameter.

Since the control limits for a multivariate Shewhart chart based on the control statistic Vi
would be set as

{
0, χ2

1−α[(n− 1)p]
}

, a Shewhart chart based on Vi signals whenever

Vi ≥ χ2
1−α[(n− 1)p]. (3.1)

If the process shifts from Σ0 then it is difficult to obtain the exact distribution of Vi. Thus
in order to obtain the percentage points of Vi when the process is out-of-control state, it is
necessary to use simulations.

For a Shewhart chart based on the LRT statistic TVi would be set by using percentage
point of TVi, a Shewhart chart based on TVi signals whenever

TVi ≥ hTV (S) (3.2)

where hTV (S) can be obtained to satisfy a specified in-control ARL by simulation.
Since it is difficult to obtain the exact distribution of TVi when the process is in-control

or out-of-control states, hTV (S) and performances of this chart are obtained by simulations.
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3.2. Multivariate CUSUM charts

The CUSUM chart is a good alternative to the Shewhart chart and is often used instead of
standard Shewhart chart when detection of small shifts in a production process is important.
A CUSUM chart directly incorporates all of the information in the sequence of sample values
by plotting the cumulative sum of the deviation of the sample values from the target value.

A multivariate CUSUM chart based on the statistic Vi in (2.1) is given by

YV,i = max {YV,i−1, 0}+ (Vi − kV ) (3.3)

where YV,0 = ωV (ωV ≥ 0) and reference value kV ≥ 0. This chart for dispersion matrix
signals whenever YV,i ≥ hV .

When the process parameters are on-target, decision interval hV can be evaluated by the
Markov chain or integral equation approach to satisfy a specified in-control ARL. And when
the process parameters in Σ have changed, the performances of this chart can be evaluated
by simulation.

And for a CUSUM chart based on the statistic TVi in (2.3) can also be constructed as

YTV,i = max {YTV,i−1, 0}+ (TVi − kTV ) (3.4)

where YTV,0 = ωTV (ωTV ≥ 0) and kTV ≥ 0. This chart signals whenever YTV,i ≥ hTV .
Since it is difficult to obtain the exact performances of multivariate CUSUM scheme based

on TVi, the percentage point and properties of this chart can be evaluated by simulation
under the assumption that the process parameters of the process are on-target or changed.

4. Numerical performances and concluding remarks

The ability of a control chart to detect any shifts in the production process is determined
by the length of time required to signal. Thus, a good control chart detects shifts quickly
in the process when the process is out-of-control state, and produce few false alarms when
the process is in-control state. To compare the performances of the proposed control charts,
P (signal is given |Σ0) was fixed for all proposed charts.

In order to evaluate the performances and compare the proposed multivariate Shewhart
and CUSUM charts fairly, it is necessary to calibrate each schemes so that on-target ARL
E(N |Σ0) be the same for all proposed schemes. In our computation, each scheme was
calibrated so that the on-target ARL was approximately equal to 200 and the sample size
for each characteristic was five for p = 3 and p = 4. For convenience, we let that the
sampling interval of unit time d = 1 and known target mean vector µ

0
= 0. The performance

of the charts for monitoring variance-covariance matrix depends on the components of Σ.
For computational simplicity in our computation, we assume that σ2

r0 = 1, ρrs0 = 0.3 for
r, s = 1, 2, · · · , p.

Since it is not possible to investigate all of the different ways in which Σ could change, we
consider the following typical types of shifts for comparison in the process parameters :

(1) SDi : σ10 in Σ0 is increased to [1 + 0.2i], i = 1, 2, · · · , 6.
(2) Ci : ρ120 and ρ210 of Σ0 are changed to [0.3 + 0.05i], i = 1, 2, · · · , 6.

After the reference value of the proposed CUSUM chart based on Vi, decision interval
hV was calculated by Markov chain method with the number of transient states r = 100.
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A good choice for reference valus k of CUSUM charts depends on the number of quality
variables in the proposed control scheme and the size of shift of interesting.

The design parameters hTV (S), hV , hTV values, and the ARL performances of the proposed
Shewhart and CUSUM charts were obtained by simulation with 10,000 iterations. Numerical
performances of the proposed charts in this study are given in Figures 4.1 through 4.4.

Figures 4.1-4.2 show that a shift for only variance components in Σ has occurred, the chart
based on the Lawley-Hotelling Vi control statistic seems more efficient than TVi control
statistic, and CUSUM procedure is more efficient than Shewhart procedure.
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Figure 4.1 ARL performances when σ1 in Σ has changed (p =3)
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Figure 4.2 ARL performances when σ1 in Σ has changed (p =4)

Figures 4.3-4.4 show the performances of the charts based on Vi and TVi when some shift
on correlation coefficient component ρ12 in Σ has occurred. We can note that ARL values of
the charts based on Vi considerably increase compared with in-control state ARL 200 when
some shifts on correlation coefficients have occurred.

It is common that if there are small or moderate shifts in the production process then the
ARL values of CUSUM are smaller than Shewhart chart’s ones. However, from the Figures
4.3-4.4, ARL values of CUSUM charts are greater than that of Shewhart charts when small
or moderate shifts on correlation coefficients of quality variables have occurred. Therefore,
when any shifts in correlation coefficient component in Σ are anticipated, the charts based
on Vi are not recommendable, and the CUSUM chart based on TVi gives relatively better
performances and is more preferable.
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Figure 4.3 ARL performances when ρ12 in Σ has changed (p =3)
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Figure 4.4 ARL performances when ρ12 in Σ has changed (p =4)

Based on Figures 4.1-4.4, when some shifts both on variance components and correlation
coefficient components are anticipated, we recommend to use the CUSUM charts based on
control statistic TVi since the control charts based on Vi is bad at detecting the changes in
correlation coefficient of quality variables, even though in some process changes the ARL
values from Vi may be possibly smaller than those from TVi.

However, if the changes of quality characteristics’ correlation coefficient do not nearly
effect on the product quality, then the CUSUM charts based on Vi may be applicable.
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