Cinnamon Clownfish Amphiprion melanopus의 난발생과 자치어 변태에 미치는 먹이생물과 갑상선호르몬의 영향

Egg Development and Effects of Livefood and Thyroid Hormone on the Amphiprion melanopus Larvae

  • 노경언 (부경대학교 대학원 수산생물학과) ;
  • 노섬 (한국해수관상어센터) ;
  • 민병화 (동해수산연구소) ;
  • 장영진 (부경대학교 대학원 수산생물학과)
  • Noh, Gyeong-Eon (Dept. of Fisheries Biology, Graduate School, Pukyong National University) ;
  • Rho, Sum (Corea, Center of Ornamental Reefs and Aquariums) ;
  • Min, Byung-Hwa (Aquaculture Industry Division, East Sea Fisheries Research Institute) ;
  • Chang, Young-Jin (Dept. of Fisheries Biology, Graduate School, Pukyong National University)
  • 투고 : 2011.04.12
  • 심사 : 2011.06.11
  • 발행 : 2011.06.30

초록

Amphiprion melanopus의 난발생과 자치어의 형태학적 발달에 대한 기초 조사와 함께, 먹이생물과 갑상선호르몬이 자치어의 성장과 체색에 미치는 영향을 조사하였다. 수정 후, 부화까지 총 168시간이 소요되었다. 갓 부화 자어의 크기는 평균 $3.5{\pm}0.3$ mm 으며, 대부분의 자어는 부화 후 경과일 수에 따라 체색 변화(변태)를 나타내었다; DAH(days afterhatching) 10: 체색 흑화, DAH 15~20: 3개의 흰 줄무늬 출현, DAH 30: 등과 꼬리지느러미의 흰 줄무늬가 사라지기 시작,DAH 90: 체색 주황색; 성어: 체색은 진한 계피색이며 머리에만 흰 줄무늬 남음. Artemia와 T. japonicus를 함께 공급한실험구의 성장은 Artemia만 공급한 실험구보다 빨랐다. T. japonicus 만을 공급한 실험구의 지느러미 체색은 진하고 선명한 주황색이었다. 갑상선호르몬을 처리한 4 ppm구의 성장이 다른 실험구(0, 2, 6 ppm)보다 빨랐고 6 ppm구가 가장 느렸다. 본 연구의 결과, 주요 먹이생물로 알려져 있는 Artemia와 함께 T. japonicus를 공급함으로써 A. melanopus의 성장과체색을 개선시킬 수 있었고, 갑상선호르몬 또한 변태 및 체색 형성에 직접적으로 관여할 것으로 사료된다.

The aim of this study was to investigate the egg development and the color change of Amphiprion melanopus, by the live food and thyroid hormone. After fertilizing, it took 168 h until hatching. The size of hatching larvae were $3.5{\pm}0.3$ mm, and some individuals had small yolk sac. As reaching the particular age, they underwent the color change (metamorphosis) - Days after hatching (DAH) 10: black, DAH 15~20: the 3 white stripes appear, DAH 30: the dorsal & the caudal white stripe begin to disappear. DAH 90: body color become red and orange, adult: cinnamon body color and a white stripe on head. - The group fed enriched Artemia with Tigriopus japonicus grew the faster than with only Artemia. The fin coloration of the one fed the only T. japonicus has a vivid red and orange color. $T_3$-treated group (4 ppm) grew the faster than the others (0, 2, 6 ppm). The size of the 6 ppm group was the smallest. The results suggest T. japonicus can be used as a supplement with rotifer and Artemia for the juvenile development and coloration. $T_3$ is considered to be involved in the metamorphosis and color formation of Amphipirion sp.

키워드

참고문헌

  1. Bertschy A (1979) Essais de reproduction en aquarium d'Amphiprion ocellaris Cuv (Pomacentrides). Rev Fr Aquariol 6(3):91-94.
  2. Bjornsson BT, Stefansson SO, McCormick SD (2011) Environmental endocrinology of salmon smoltification. Gen Comp Endocrinol 167:77-85.
  3. Clement SE, Lichtenbert JH, Kohler CC (2001) Stripping Clowns: Induced meristic changes in common clownfish (Amphiprion ocellaris). Bulletin de l'Institut oceanographique, Monaco, n$n^{\circ}$special 20, fascicule 1.
  4. Evjemo JO, Reitan KI, Olsen Y (2003) Copepods as live food organism in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with specical emphasis on the nutritional value. Aquaculture 227:191-210. https://doi.org/10.1016/S0044-8486(03)00503-9
  5. Faulk CK, Holt GJ (2005) Advances in rearing cobia (Rachycentron canadum) larvae in recirculating aquaculture systems: live prey enrichment and greenwater culture. Aquaculture 249:231-243. https://doi.org/10.1016/j.aquaculture.2005.03.033
  6. Fleeger JW (2005). The potential to mass-culture harpacticoid copepod for use as food for larval fish. In: Copepods in Aquaculture. O'Bryen and NH Marcus eds Blackwell Publishing Oxford UK pp11-24.
  7. Fuji R (2000) The regulation of motile activity in fish chromatophores. Pigment Cell Res 13:300-310. https://doi.org/10.1034/j.1600-0749.2000.130502.x
  8. Hoff FH (1996) Conditioning, spawning and rearing of fish with emphasis on marine clownfish. Aquaculture Consultants Inc 1st Edit pp119-131.
  9. Juhl T (1992) Commercial breeding of anemonefishes. Seascope 9:1-4.
  10. Kang DY, Chang YJ (1996) Effects of dietary 3,5,3'-triiodo-L-thyronine ($T_3$) on growth and survival rate in juvenile black seabream (Acanthopagrus schlegeli). J Aquacult 9:215-222.
  11. Kahan D (1980) Mass cultivation of food organisms in hatcheries-problems and proposed solutions. Symposium on Coastal Aquaculture Cochin India.
  12. Kelsh RN (2004) Genetics and evolution of pigment patterns in fish. Pigment Cell Res 17:326-336. https://doi.org/10.1111/j.1600-0749.2004.00174.x
  13. Kim SR, Hur SB (2007) Spawning, hatching and larval growth of red and black clownfish Amphiprion melanopus. J Aquacult 20:239-247.
  14. Kim YO, Jo JY, Oh SY (2008) Effects of dietary spirulina, chlorella, and astaxanthin on the body color of redand white-colored carp, Cyprinus carpio. J Kor Fish Soc 41:193-200.
  15. Leatherland JF (1987) Throid hormones and reproduction. In: Norries DO Jones RE. editor, Hormones and Production in Fishes, Amphibian and Reptile. New York Plenum Press pp411-431.
  16. McKinnon AD, Duggan S, Nichols PD, Rimmer A, Semmens G, Robino B (2003) The potential of tropical paracalanoid copepods as live feeds in aquaculture. Aquaculture 223: 89-106. https://doi.org/10.1016/S0044-8486(03)00161-3
  17. Moorhead JA, Zeng C (2010) Development of captive breeding techniques for marine ornamental fish: A review. Rev Fish Sci 18:315-343. https://doi.org/10.1080/10641262.2010.516035
  18. Nery LEM, Castrucci AML (1997) Pigment cell signalling for physiological color change. Comp Biochem Physiology 118A:1135-1144.
  19. Olivotto I, Cardinali M, Barbaresi L, Maradonna F, Carnevali O (2003) Coral reef fish breeding: the secrets of each species. Aquaculture 224:69-78. https://doi.org/10.1016/S0044-8486(03)00207-2
  20. Olivotto I, Capriottoi F, Buttino I, Avella AM, Vitiello V, Maradonna F, Carnevali O (2008) The use of harpacticoid copepods as live prey for Amphiprion clarkii larviculture: Effects on larval survivial and growth. Aquaculture 274:347-352. https://doi.org/10.1016/j.aquaculture.2007.11.027
  21. Rawls JF, Mellgren EM, Johnson SL(2001) How the zebrafish gets its stripes. Dev Biol 240:301-314. https://doi.org/10.1006/dbio.2001.0418
  22. Stottrup JG, Norsker NH (1997) Production and use of copepods in marine fish larviculture. Aquaculture 155:231-248. https://doi.org/10.1016/S0044-8486(97)00120-8
  23. Schreiber A, Specker J (1999) Early larval development metamorphosis in the summer flounder: Change in percent whole-body water content and effects of altered thyroid status. J Fish Biol 55:148-157.
  24. Tanaka Y, Katayama T, Simpson KL, Chicheester CO (1976) The biosynthesis of astaxanthin-XIX. The distribution of $\alpha$-doradexanthin and the metabolism of carotenoids in goldfish. Bull Jpn Soc Sci Fish 4:885.
  25. Yamano K (2005) The role of thyroid hormone in fish development with reference to aquaculture. JAQ 39(3):161-168.