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Abstract : Most nations around the world have expressed significant concern in the climate change due
to a rapid increase in green-house gases and thus reach an international agreement to control total amount
of these gases for the mitigation of global warming. As the most important absorber of carbon dioxide, one
of major green-house gases, forest resources should be more tightly managed with a means to measure
their total amount, forest biomass, efficiently and accurately. Forest biomass has close relations with forest
areas and tree height. Airborne LiDAR data helps extract biophysical properties on forest resources such as
tree height more efficiently by providing detailed spatial information about the wide-range ground surface.
Many researchers have thus developed various methods to estimate tree height using LiDAR data, which
retain different performance and characteristics depending on forest environment and data characteristics.
In this study, we attempted to investigate such various techniques to estimate tree height, elaborate their
advantages and limitations, and suggest future research directions. We first examined the characteristics of
LiDAR data applied to forest studies and then analyzed methods on filtering, a precedent procedure for tree
height estimation. Regarding the methods for tree height estimation, we classified them into two categories:
individual tree-based and regression-based method and described the representative methods under each
category with a summary of their analysis results. Finally, we reviewed techniques regarding data fusion
between LiDAR and other remote sensing data for future work.
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1. Introduction

At present, people around the world are interested
in the problem of climate change due to an increase
of green-house gases in concurrence with an
enforcement of an agreement for global environment
in order to reduce the amount of six kinds of green-

house gas emission including carbon dioxide through

Kyoto Protocol, which is an international agreement
for controlling and preventing global warming.
Especially, Kyoto Protocol considers forest resources
as a source of absorbing carbon dioxide in which the
carbon absorption by forest biomass is recognized as
gas emission reductions. Therefore, technology on
forest resource measurement customized to the

different characteristics of forest in each country is
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essential. This results in current active studies on
estimating forest biomass (Lefsky ef al., 2001;
Patenaude et al., 2004; Goodwin ef al., 2006; Hollaus
et al., 2007; Popescu, 2007; Zhao et al., 2009). It is
important to figure out the problems and critical
points from previous studies as forest characteristics
are very diverse according to location and climate and
a clear definition of biomass and standard
mathematical model for its estimation has not been
established yet.

Forest tree structure is important for the analysis of
forest ecosystem process, and measurements about it
are essential for monitoring, modeling and managing
forest (Sexton et al, 2009). Forest measurements
generally includes meaningful tree characteristics
which can be measured within forest areas, such as
tree height, DBH (diameter at basal height), species
of trees and the number of trees. '

With traditional forest inventory methods, it is
possible to obtain forest measurements technically
simply only at the sample plots of the forest, but it is
hard to perform this work in mountainous terrain and
closed forest (Andersen er al., 2006). Actually, it is
almost impossible to perform such field survey on the
entire area of widely-spread forest. On the other hand,
airborne and satellite-borne sensors provide data from
wide-range of forest areas economically and
efficiently, which result in various studies on forest
measurement using remote sensing data (Nasset,
1997). Active remote sensors, especially LiDAR
(light detection and ranging) system, enable to
estimate vertical structure of wide-range of forests
with high accuracy more efficiently (Lefsky et al.,
2002a).

Among forest measured factors, tree height is one
of the most essential and fundamental measurement
for quantitative assessment of tree growth and
biomass estimation (Andersen et al., 2006). Lim et al.

(2003) estimated maximum laser height from LiDAR

data, mean laser height calculated from all LIDAR
returns, and mean laser height calculated from data
filtered using intensity information, and performed
regression analysis with forest measurements
obtained in the field. The analysis result showed that
many forest characteristics are highly correlated such
as BA (basal area) and aboveground biomass. As tree
height has a close relationship with the forest
resources information and can be measured
quantitatively, studies for estimating tree height have
been conducted actively. The recent active researches
include tree height estimation using airborne LIDAR
(Nilsson, 1996; Nesset, 1997; Hyyppi et al., 2001;
Popescu et al., 2002; Lefsky ef al., 2005; Andersen et
al., 2006; Coops et al., 2007; Tesfamichael et al.,
2010), tree height estimation by combining airborne
LiDAR data with satellite optical or SAR images
(Andersen et al., 2003; Sudrez et al., 2005; Hyde et
al., 2006; Hyde et al., 2007; Sexton et al., 2009, Sun
et al., 2010), and tree height and DBH estimation
using terrestrial LIDAR systems (Bienert ez al., 2006;
Huang, 2011).

Methods of estimating forest information can be
largely divided into 1) individual tree-based methods
and 2) regression-based methods (Maltamo et al.,
2005). The individual tree-based methods are a
technique to estimate the number of trees, tree height
and horizontal distribution of trees quantitatively by
detecting individual trees from the forest area, and
various kinds of algorithms have been suggested for
detecting individual trees (Perssen et al., 2002; Koch
et al., 2006; Lin ef al., 2011). In Korea, the individual
tree-based methods have mainly been used to
estimate forest parameters inciuding the number of
trees and tree height. Chang ez al. (2006} segmented
individual tree crowns and estimated the tree heights
using a watershed algorithm and a local maximum
filter. Also, Woo et al. (2007) applied a moving
window operation to CHM (Canopy Height Model
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to extract the peak points of individual tree crowns
and estimated the number of trees and the tree
heights. The regression-based method is to estimate
forest structure based on statistical methods such as
an analysis of vertical distribution of trees and
average tree height estimation about the data obtained
within a specific area. The detailed descriptions will
be explained further in Section 4,

LiDAR systems can be generally categorized into
discrete or waveform LiDAR systems according to
the output data type. Discrete LIDAR systems have
relatively small footprints (0.25-1m) while waveform
systems has larger footprints (10-100m) (Hudak er
al., 2002). Waveform LiDAR systems provide full-
waveform data about each individual pulse by
sending one laser pulse and receiving continuous
pulses reflected within wide footprint. Since the full-
waveform data includes pulses reflected from the
ground and from the top of trees, maximum tree
height and average tree height can be estimated by
detecting the location of pulse peak reflected from the
ground and the top of trees. Typical waveform
LiDAR systems include GLAS (Geoscience Laser
Altimetry System), LVIS (Laser Vegetation Imaging
Sensor) and SLICER (Scanning LiDAR Images of
Canopies by Echo Recovery) (Sun et al., 2008).
Although waveform systems are more complex in
data processing than discrete LiDAR systems, they
are promising and useful in forest studies (Hudak et
al., 2002, Maltamo ef al., 2005).

Discrete LiDAR systems have been widely used in
various fields such as building modeling, target
detection, obstacle avoidance and terrain mapping as
well as in forest applications. Discrete LiDAR
systems send one pulse and can receive multiple
return pulses, but generally provide first return and
last return including the location coordinates with
intensity information. First return tends to record a

signal reflected for the first time while last return
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records a signal passing through the tree and reflected
finally, for example, on the ground surface under the
tree. A study on tree height estimation using such a
property was performed by Hyde et al. (2007).

Forest studies employ airborne LiDAR data to
estimate and investigate forest resources information
by applying a specific process and algorithm to
various forest environments. Since there has been no
standard for the input LIDAR data properties and the
output verification process in forest applications, it is
difficult to compare the results of various forest
studies absolutely. Moreover, the methods applied to
each study have their own advantages and limitations
according to the data used and characteristics of trees.
Thus, in order to perform forest study using LiDAR
data in future, it is necessary to classify and
summarize the methods of the existing studies
systematically.

The purpose of this study is to investigate the
advantages and limitations of the current forest
studies using airborne discrete LiDAR data by
analyzing widely used methods, especially the studies
on tree height estimation. In this paper, the
methodology used to perform this study is first
explained and the properties of LIDAR data for forest
studies are discussed. The study then analyzes major
algorithms on filtering, a preprocessing procedure of
LiDAR data and examining advantages and
limitations of two methods in major study cases for
tree height estimation. Finally, the work presents a
plan for study on forest investigation from the fusion

of LIDAR and other remote sensors,

2. Methodology

This paper involves rich literature review in major
overseas journals related to remote sensing such as

Remote Sensing of Environment, Forest Ecology and
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Fig. 1. Classification of forest studies using airbome LIDAR data.

Management, and Photogrammetry and Remote
sensing in order to analyze forest studies using
LiDAR data, and refers to theses presented in
proceeding of Silvilaser, an international conference
about LiDAR application for measuring forest
ecosystem and international academic conferences.
The collected research studies are classified into
researches on filtering and DTM (digital terrain
model) generation, techniques to estimate various
kinds of forest measuring factors and techniques
using LiDAR and other remote detecting sensors.
The research studies to estimate forest metrics are
largely composed of studies estimating tree height or
biomass, which can be classified into individual tree-
based method and regression-based method
according to the method of data processing. This
paper focuses on the method of estimating tree
height. The work involves analysis of the
characteristics of LiDAR data and its preprocessing
procedure. Also, as studies on tree height estimation
using LiIDAR data have been conducted actively until
now, the study examines the techniques on
combining LiDAR and other remote sensing data.
Fig. 1 shows classification of forest studies using
airborne LiDAR data.

3. Data Characteristics

LiDAR data obtained from discrete LiDAR system
shows various types of characteristics according to
the system and forest environmental conditions.
Accordingly, it is necessary to figure out the
characteristics of the acquired LiDAR data in order to
select an appropriate data processing method.

Generally, as the point density of LiDAR data is
higher and the size of footprint is smaller, it would be
more helpful to estimate individual tree location and
tree height minutely. Persson et al. (2002) used
LiDAR data having various sizes of footprint (0.26
m, 0.52 m, 1.04 m, 2.08 m, 3.68 m) in order to
estimate individual tree and tree height. The results of
detecting individual tree showed 66% of detection
rate in data having 3.68 m of footprint, while 71% of
sensing rate in data having 0.26 m of footprint, and
also as for tree height, RMSE with field
measurements reduced as footprint was smaller.

Point density of LIDAR data used in forest studies
varies from 1 or less to 10 or more per m”.
Brandtberg et al. (2003) used data with about 0.1m of
footprint and about 12 returns/ m* of point density in
order to estimate tree metrics using LiDAR data
acquired in winter. Maltamo ez al. (2005) used data
with 10 returns/m” of point density for analyzing tree
height distribution in plot area and understory
vegetation using histogram. Sudrez et al. (2005)
estimated tree height with high accuracy (R* =89)
using data with 3-4 returns/m’ of point density. It
seems that estimation of forest information according
to point density is related to tree distribution in the
forest and the characteristics of trees such as age-
class. In case that age-class and species of trees in the
target area are similar, metrics values such as DBH
are also similar. Fig. 2 shows metrics of an individual
tree. Therefore, the characteristics of trees spreading

over wide areas can be figured out more accurately

-392-



Crown
width

Crown
height

Tree
height

Fig. 2. Forest inventory metrics.

with fewer samples.

In case that there are many kinds of trees with
various heights and that the shape of crown is narrow
and long, it is hard to estimate the height and
distribution of trees accurately with low point density.
That is, though high point density has an advantage
that it can model the tree structure more accurately, it
is possible to estimate tree characteristics even with
low point density according to the characteristics of
forests. Therefore it is necessary to conduct a study
on selecting appropriate point density considering
expected accuracy. In case of deciduous forests that
they have dramatically changed crown conditions
according to seasons and crown closure is high in
summer, this results in having very few LiDAR data
reaching to the ground. Hendrix (1999) showed that
93% of LiDAR data obtained in forest of mixed
deciduous trees in Aiken area of South Carolina did
not reach the ground (Jensen, 2000). Similarly, in
case of high crown closure of trees, degree of
accuracy of forest estimation can be relatively low.
Thus, Wagner et al. (2004) generated DTM from
LiDAR data acquired under leaves-off and leaves-on
conditions in forest areas using hierarchy robust

filtering technique and compared them. As a result of
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the comparison, LiDAR data obtained in winter had
high penetration ratio to the ground and is possible to
generate more accurate DTM. LiDAR data acquired
in summer had low penetration ratio while DSM
(digital surface model) presented the top of the trees
more exactly. This indicated that it would be possible
to obtain more accurate tree height model by
subtracting a winter DTM from the corresponding

summer DSM.

4. Filtering

In order to estimate tree height from LiDAR data
acquired in forest areas, filtering should be applied to
remove the effects due to the height and slope
variation of the ground in forest areas before
estimating tree height. Filtering means a process of
classifying ground points from LiDAR data. Fig. 3
shows a result of filtering operation applied with a
slope-based method.

As the DTM generated from classified ground
points (Fig. 3b) is used to estimate tree height, it is an
important preprocessing procedure for tree height
estimation. Many studies on filtering have been
already performed. Axelsson (2000) studied a method
of classifying ground points from LiDAR data using
an adaptive TIN model at the same time generating
DEM. This classifies LiDAR data with wide-distant
grid and extracts seed points which are assumed to be
ground points within each grid. It adds points which
are assumed to be ground points to TIN by
calculating threshold parameter of distance and
angles with TIN facets after creating TIN from the
seed points. It generates final ground DEM by
repeating such a process until there is no added point.
This algorithm applied to TerraScan, one of
commonly-used software for processing LIDAR data
and Maltamo et al. (2005), Coops et al. (2007) and
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Fig. 3. {a) LiDAR data in forest areas. (b} Ground points
classified after filtering.

Lin et al. (2011) used TerraScan for classifying
ground points in forest studies using LiDAR data.
Besides, various approaching methods were
suggested including slope-based filtering (Vosselman,
2000; Sithole, 2001) and morphological filtering
(Keqi et al., 2003; Arefi and Hahn, 2003). Sithole
(2001) used a slope map of filtered areas in order to
supplement problems caunsed when threshold was
fixed to a specific value in existing slope-based
filtering. As a result of comparing it with TerraScan
filtering applied with adaptive-TIN filtering, it could
remove non-ground points without discarding many
ground points compared with TerraScan filter.
Especially, filtering for forest areas (Kraus and
Pfeifer, 1998; Raber et al., 2002; Kobler et al., 2007;
Tang et al., 2008) suggested appropriated methods
considering geographic features of the forest.

After distinguishing between ground points and
non-ground points through filtering, it is possible to
generate DTM from the ground points. Generally, as
forest areas include slope, flat terrain heights of non-
ground points is calculated by subtracting DTM

values from all height values of LIDAR data obtained
in forest areas. The heights of non-ground points
estimated in this way represent vertical structure
distribution of trees removing slope heights. Forest
studies estimate forest information using those non-
ground points directly, or use them to figure out
distribution of tree height by generating DSM which
is called CHM.

The major purpose of filtering in forest areas is to
classify the ground points from LiDAR data reflected
from trees and the ground. Since there are quite many
complex features and various species of trees mixed
in actual forests, it is not a simple task to classify data
reflected on the ground using LiDAR data only.
Especially, in case of high density of the tree crown
and low point density of LiDAR data, the number of
ground points classified through filtering is low,
making the accuracy of DTM lower. Accordingly,
when conducting forest studies using LiIDAR data, it
is necessary to determine whether it is appropriate
data for detecting the ground surface in forest areas or
not. This can be done by computing the ratio of
ground points and all LIDAR points or measuring the
number of ground points in a sample area.
Additionally, other remote sensing data can be used
to filter LIDAR data points.

5. Tree Height Estimation

Non-ground points represent the vertical structural
distribution of forest. Methods of estimating forest
information using such data can be divided into
individual tree-based methods and regression-based
methods. The individual tree-based methods extract
individual trees by applying image processing
techniques to CHM which convert three dimensional
LiDAR data into gray-scale images according to
altitude, while the regression-based methods derive
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forest information by applying statistical techniques
to the point data.

1) Individual tree-based methods

The individual tree-based method estimates tree
information such as the number of trees, tree height
and horizontal distribution after sensing individual
tree distributed in forest areas. In order to identify
individual trees, a method using watershed segmentation
(Soille, 1999; Schardt, et al., 2002; Chang ef al., 2006)
and local maximum filtering (Persson et al., 2002;
Popescu et al., 2002) are mainly used. The watershed
segmentation algorithm is one of image processing
techniques, which classifies tree crown areas of
individual trees by extracting border lines between
the tree crowns in CHM, gray-scale images. It
determines the tree location and height using the
highest cell values within the classified individual tree
crown area. Popescu ef al. (2002) extracted individual
trees by assuming the highest altitude value among
the data acquired from the same tree crown as an
apex of the tree and by applying local maximum
filtering to CHM. At this time, the size of a window
used for filtering should be similar to that of
individual tree crown which is expected to be
observed. Basically, the higher the tree height is, the
bigger the size of tree crown is. Accordingly, it
performed on-site investigation of total 189 trees and
established a relation equation between the tree height
and the crown size of a tree. Using this relation,
various sizes of individual trees were extracted by
changing the size of a window according to the height
of CHM (Fig. 4).

However, such a method of individual tree
extraction has a disadvantage that it needs advance
information about the shape and size of the tree
crown. As the size of tree crown is quite various, with
a fixed size of window, the accuracy of the tree

extraction can be lowered. Lin er al. (2011) extracted
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Fig. 4. Variable windows that identified tree tops (Popescu et
al, 2002).
the tree crowns of individual trees automatically by
using multi-level morphological active contour
algorithm (MMAC) which supplemented the
disadvantages of the existing algorithms for
individual tree extraction. MMAC extracts the border
line of tree crown of individual tree by applying
bottom up erosion, top down dilation and active
contour model to CHM. This identifies the apex of
tree crown area and delineates the border of tree
crown by identifying the object by each height value
of images without using a specific window. The
individual tree-based method is hard to identify the
lower trees when forests have various species of trees
and multi-layered structure, and its accuracy can be
lowered in case that the shape of tree crown is not
appropriate for individual tree extraction, but it has an
advantage to provide more quantitative forest

information.

2) Regression-based methods

The regression-based method applies a general

statistical technique to LIDAR data measurements

-395-



Korean Joumnal of Remore Sensing, Vol.27, No.3, 2011

distributed in wide plot areas. ¥t extracts meaningful
forest information by analyzing distribution and
density of the measurements without necessarily
deriving a CHM by subtracting a DTM from LiDAR
points. Naesset (2002) estimated characteristics of
many trees in each 200 m? of a sample plot arca. He
determined quantiles of 0, 10, -+, and 90 percentile
about vertical height distribution of LiDAR data in
the sample area and estimated maximum, minimum,
coefficient of variation and density of trees. He also
evaluated the accuracy of average height, dominant
height and mean diameter with the comparison of
field measurements. Maltamo et al. (2005) examined
forest structure composed of many kinds of trees
using HistMod algorithm based on histogram
analysis. The size of sample plots is around 30m x
30m and average height of understory trees is
estimated by judging whether histogram of LiDAR
data included to the plot is multi-layered structure or
not. The distribution of LIDAR data is generally
represented in Fig. 5 which is a histogram of 182
points within the 10m X 10m size of plot. When the
density of understory vegetation is high, the data
frequency data with low height is shown high.
HistMod algorithm first creates a histogram which
represents the frequency of non-ground points
according to their height from the ground. It
calculates Lloyd’s threshold (the first vertical bar
from the right in Fig. 6) which classifies overstory
and understory trees and determines multi-layered
structures from the difference between maximum
frequency (MaxFreq) and minimum frequency
(MinFreq) of the understory trees located in the left
side (Fig. 6). As the regression-based methods
estimates forest biophysical properties based on a plot
area, the accuracy can be lowered relatively in
comparison with the individual tree-based methods.
However, it is possible to analyze data objectively

using verified statistical techniques when estimating

tree height (m)

0 5 10 s 20
Frequency

Fig. 5. Histogram of LIDAR data in a plot.

average values in the wide area or identifying the

vertical structure of multi-layered forest.

6. Data Fusion

In order to estimate forest information in more
detail, stadies based on fusion of LiDAR system with
other sensory data have been performed. Hudak ef al.
(2002) estimated and mapped tree height by
combining LiDAR data and Landsat ETM+ data.
Sudrez et al. (2005) detected individual trees and
estimated tree heights in forest areas by using LiDAR
data and airborne images. Hyde ef al. (2006} aimed to
improve results from individual sensors by
integrating LiDAR, InSAR, Landsat ETM+ and
Quickbird data for tree height estimation. Tree height
estimated by using a formula model including various
variables extracted from four kinds of data showed
more promising result (R* = 0.835) than that by the
LiDAR sensor alone (R? = 0.757). Also, Hyde et al.
(2007) predicted aboveground biomass of coniferous
forests using LiDAR, SAR (FOEN) and InSAR
(GeoSAR) data and performed a comparison with
filed values, and established formula models in order

to examine a synergy effect through data fusion.
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Fig. 6. Hustration of the HistMod algorithm (Maltamo et al,, 2005).

Major variables applied to the model include many
kinds of heights (max, mean and percentiles) and
response metrics which can be extracted from LIDAR
and SAR data. As a result of regression analysis,
when estimating by an individual sensor, LIDAR
sensor showed the highest coefficient of
determination (R2 =0.837), and though it was
improved to 0.868 as a result of analysis through
three kinds of data fusion, it did not show a
significant improvement. Sexton et al. (2009) tried to
estimate tree heights from LiDAR, GeoSAR and
SRTM data and compared them. As a result of
regression analysis with field data, LIDAR, GeoSAR
and SRTM showed coefficient of determinations
(R’= 0.83, 0.70, 0.54) respectively. Many forest
studies based on data fusion use LiDAR data with
high vertical accuracy and images with high
horizontal accuracy and semantic information. Also,
the studies using LiDAR and radar sensors are
gradually increasing. As a result of analysis by
employing various kinds of previous studies together,
the individual sensor showing the highest accuracy in
estimating tree height is a LiDAR, and in order to
supplement disadvantages of LiDAR, data fusion is
pursued for the improvement of the results. Generally,
although LiDAR data can be the most useful for the
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generation of a DSM with higher resolution and
accuracy than other kinds of data such as InSAR,
they have some limitations in DTM generation. This
is because as density of trees and tree crown closure
ratio is higher, the probability of laser pulse of
LiDAR sensors to pass through crown and reach the
ground is sharply decreased. In this case, it is difficult
to classify ground points by filtering from LiDAR
data obtained in forest areas. Thus, it is advantageous
to use DTM generated from InSAR (L-band) data,
having averagely high accuracy despite relatively low

resolution, as a reference.

7. Discussion

Airborne LiDAR systems generate data having
various characteristics according to system types and
operational variables. Forest ecosystem also shows
different shapes, width and distribution of tree crown
according to the location, climate and environmental
conditions. Accordingly, a promising existing method
for forest estimation applied to a forest area may not
produce reasonable results from its application to
other specific type of forest. Persson ef al. (2002)
detected individual trees in 12 plots classified
according to species of trees and topography, and as a
result, it showed almost 100% of detecting rate in plot
1, while it showed under 50% in plot 6 with the
highest tree density. In addition, there were the cases
where the first return could not be reflected from the
top of tree accurately and the last return could not be
reflected from the ground by penetrating trees. As
LiDAR data provides spatial information about
points, it is hard to identify the shape of tree crown
and terrain accurately in case that the point interval is
wide since the ratio of laser pulse which penetrates
trees being reflected on the ground becomes lower

when there is understory vegetation in the forest.
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Thus, tree height estimated from discrete LIDAR data
tends to be estimated too smaller than the real value.
Accordingly, in order to extract exact forest
information, appropriate data and algorithms should
be used with the consideration of advance
information about the forest. For example, if it is hard
to sense the top of trees due to flat shape of tree
crown, the regression-based method would be more
appropriate than the individual tree-based method.
Also, in order to generate DTM from LiDAR data in
deciduous forest, it is effective to use leaf-off data
attained in winter. Many studies using LiDAR data
which has various characteristics according to forest
topography, species of trees and shape of tree crown,
and remote sensing data should be conducted

constantly and construct the optimal methodology.

8. Conclusion

This paper classified and analyzed studies
- estimating biophysical properties of forest, especially
tree height from airborne LiDAR data, and derived
their advantages and limitations. Such studies have
been performed up to recently with various subjects.
As tree height shows high correlations with many
forest biophysical properties, it is possible to estimate
such metrics using tree height estimated from LiDAR
data. Methods of tree height estimation can be
divided into individual tree-based methods and a
regression-based methods. When estimating
quantitative and accurate forest information from
LiDAR data with high resolution in a small area, the
individual tree-based method is efficient, and in order
to estimate general forest information in a wide area
for estimating the amount of forest biomass, the
regression-based method is appropriate. Though
LiDAR data provides higher accurate forest

information than other remote sensors, in order to

acquire more improved resuits by supplementing the
disadvantages of LiDAR data, studies on data fusion
with other sensor data are also being progressed
currently. Based on the analysis results from this
study, we will pursue a further study on estimating
and verifying forest biophysical properties including
tree height by combining LiDAR data and SAR data.
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