DOI QR코드

DOI QR Code

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il (Dept. of Spatial Information Engineering, Pukyung National University) ;
  • Han, Kyung-Soo (Dept. of Spatial Information Engineering, Pukyung National University) ;
  • Yeom, Jong-Min (Satellite Information Research Institute (SIRI), Korea Aerospace Research Institute (KARI))
  • 투고 : 2011.05.27
  • 심사 : 2011.06.22
  • 발행 : 2011.06.30

초록

Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

키워드

참고문헌

  1. Chopping, M. J., 2000. Testing a LiSK BRDF model with in situ bidirectional reflectance factor measurements over semiarid grasslands. Remote Sensing of Environment, 74: 287-312. https://doi.org/10.1016/S0034-4257(00)00122-X
  2. Csiszar, I., G. Gutman, P. Romanov, M. Leroy, and O. Hautecoeur, 2001. Using ADEOS/ POLDER data to reduce angular variability of NOAA/AVHRR reflectances. Remote Sensing of Environment, 76: 399-409. https://doi.org/10.1016/S0034-4257(01)00188-2
  3. Dickinson, R. E. 1983. Land surface processes and climate surface albedos and energy balance. Advances in Geophysics, 25, 305-353. https://doi.org/10.1016/S0065-2687(08)60176-4
  4. Duchemin, B. and P. Maisongrande, 2002. Normalization of directional effects in 10-day global syntheses derived from VEGETATION/ SPOT: I. Investigation of concepts based on simulation. Remote Sensing of Environment, 81: 90-100. https://doi.org/10.1016/S0034-4257(01)00336-4
  5. Gao, W., 1993. A simple bidirectional-reflectance model applied to a tallgrass canopy. Remote Sensing of Environment, 45: 209-224. https://doi.org/10.1016/0034-4257(93)90043-W
  6. Han, K. S., J. L. Champeaux, J. L. Roujean, 2004, A land cover classification product over France at 1 km resolution using SPOT4/VEGETATION data. Remote Sensing of Environment, 92(1): 52-66. https://doi.org/10.1016/j.rse.2004.05.005
  7. Hu, B., W. Wanner, X. Li, and A. H. Strahler, 1997. Validation of kernel-driven semi-empirical models for global modeling of bidirectional reflectance. Remote Sensing of Environment, 62: 201-214. https://doi.org/10.1016/S0034-4257(97)00082-5
  8. Jiang, Z., A. R. Huete, J. Chen, Y. Chen, Li, G. Yan and X. Zhang, 2006. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment, 101(3): 366-378. https://doi.org/10.1016/j.rse.2006.01.003
  9. Yeom, J. M., K. S. Han, and Y. S. Kim, 2005. A Reflectance Normalization Via BRDF Model for the Korean Vegetation using MODIS 250m Data. Korean Journal of Remote Sensing, 21(6): 361-368 https://doi.org/10.7780/kjrs.2005.21.6.445
  10. Yeom, J. M., K. S. Han, 2009. An Efficiency Analysis for Data Synthesis of Sun- and Geo- Synchronous Satllites in kernel-driven BRDF Model. Asia-Pacific Journal of Atmospheric, 45(4): 499-511
  11. Kimes, D. S., W. W. Newcombe, C. J. Tucker, I. W. Zonnefeld, W. van Vijingaarden, J. de Leeuw, and G. F. Epema, 1985. Directional reflectance factor distributions for cover types of Northern Africa. Remote Sensing of Environment, 18: 1-19. https://doi.org/10.1016/0034-4257(85)90034-3
  12. Lacaze, R., and J. L. Roujean, 2001. G-function and HOT SPOT (GHOST) reflectance model application to multi-scale airborne POLDER measurements. Remote Sensing of Environment, 76: 67-80. https://doi.org/10.1016/S0034-4257(00)00193-0
  13. Lucht, W., C. B. Schaaf, and A. H. Strahler, 2000. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Transactions on Geoscience and Remote Sensing, 38: 977-998. https://doi.org/10.1109/36.841980
  14. Pinty, B., and M. M. Verstraete, 1991. Extracting information on surface properties from bidirectional reflectance measurements. Journal of Geophysical Research, 96: 2865- 2879. https://doi.org/10.1029/90JD02239
  15. Pokrovsky, O., and J. L. Roujean, 2002. Land surface albedo retrieval via kernel-based BRDF modeling: II. An optimal design scheme for the angular sampling. Remote Sensing of Environment, 84: 120-142.
  16. Privette, J. L., T. F. Eck, and D. W. Deering, 1997. Estimating spectral albedo and nadir reflectance through inversion of simple BRDF models with AVHRR/ MODIS-like data. Journal of Geophysical Research, 102: 29529- 29542. https://doi.org/10.1029/97JD01215
  17. Roujean, J. L, M. Leroy, and P. Y. Deschamps, 1992. A bidirectional reflectance model of the earth's surface for the correction of remote sensing data. Journal of Geophysical Research, 97 (D18): 20455-20468. https://doi.org/10.1029/92JD01411
  18. Tarpley, J. D., S. R. Schneider, and R. L. Money, 1984. Global vegetation indices from the NOAA-7 meteorological satellite. Journal of Applied Meteorology, 23: 491-494. https://doi.org/10.1175/1520-0450(1984)023<0491:GVIFTN>2.0.CO;2
  19. Walthall, C. L., 1985. A study of reflectance anisotropy and canopy structure using a simple empirical model. Remote Sensing of Environment, 61: 118-128.
  20. Wanner, W., and A. H. Strahler, 1995. On the derivation of kernels for kernel-driven models of bidirectional reflectance. Journal of Geophysical Research, 100: 21077-21089. https://doi.org/10.1029/95JD02371
  21. Zhuosen, W., S. Crystal B., L. Philip , K. Yuri, S. Mitchell A., S. Alan H., Y. Tian, M. Ranga B., C. Mark J., B. Bryan J., 2011. Retrieval of canopy height using moderate-resolution imaging spectroradiometer (MODIS) data. Remote Sensing of Environment, 115: 1595- 1601. https://doi.org/10.1016/j.rse.2011.02.010

피인용 문헌

  1. Land-Cover Classification of Barton Peninsular around King Sejong station located in the Antarctic using KOMPSAT-2 Satellite Imagery vol.29, pp.5, 2013, https://doi.org/10.7780/kjrs.2013.29.5.9