DOI QR코드

DOI QR Code

삼광광산 주변 비소 오염 토양에 대한 안정화 공법 적용성 평가

Feasibility Study of the Stabilization for the Arsenic Contaminated Farmland Soil by Using Amendments at Samkwang Abandoned Mine

  • 이정락 ((주)하나/(주)동해 에코 엔지니어링) ;
  • 김재정 ((주)하나/(주)동해 에코 엔지니어링) ;
  • 조진동 ((주)하나/(주)동해 에코 엔지니어링) ;
  • 황진연 (부산대학교 지질환경과학과) ;
  • 이민희 (부경대학교 지구환경과학과)
  • 투고 : 2011.05.20
  • 심사 : 2011.06.20
  • 발행 : 2011.06.28

초록

폐금속 광산인 삼광광산 주변 비소로 오염된 농경지 토양 복원을 위하여 5 종류의 안정화를 이용한 토양안정화 배치실험과 대형칼럼실험을 통하여 안정화제에 의한 토양 내 비소(As) 안정화 효율을 규명하고자 하였다. 오염 토양으로부터 주 오염원인 비소 용출을 최소화하여 수계로의 오염을 막기 위해, 안정화제로 석회, 석회석, 인회석, 황토, RMB(red mud bauxite)를 입상(2 ~ 5 mm)과 분말상으로 구별하여 용출배치실험에 사용하였으며, 오염토양 내 안정화제의 비율은 0, 0.1, 0.5, 1, 2, 5, 10 wt%로 설정하여 실험하였다 오염토양과 수용액의 비율을 1:10 으로 혼합한 실험의 경우, 2, 5 wt% 입상 석회 첨가에 의해 비소 용출이 각각 86, 95% 감소하였고, 5와 10 wt% 석회석 첨가의 경우에는 비소의 용출이 각각 82, 95% 감소하였다. 배치실험 결과로부터 비소 용출 저감 효과가 뛰어난 입상석회와 pH 증가가 적었던 입상석회석을 안정화제로 연속칼럼실험(지름 15 cm, 높이 100 cm인 아크릴칼럼 사용)을 실시하였다. 칼럼실험을 위해 오염토양 대비 첨가한 안정화제의 질량비는 석회의 경우 1 wt%와 2 wt%, 석회석의 경우 2 wt%와 5 wt%, 석회 1 wt%와 석회석 2 wt%를 사용하였고, 마지막으로 안정화제를 첨가하지 않은 오염토양만을 이용한 칼럼(총 6개 칼럼)을 반복 실험하였다. 칼럼실험결과 1 wt%와 2 wt% 석회를 첨가한 경우와 5% 석회석을 첨가한 경우 오염토양으로부터 비소 용출은 97% 감소하였으며, 1 wt% 석회와 2 wt% 석회석을 혼합하여 첨가한 경우에서도 97% 감소하였다. 배치실험 및 칼럼실험 결과, 비소로 오염된 삼광광산주변 농경지 토양을 대상으로 석회 및 석회석을 이용한 안정화 공법의 비소 저감 효율이 매우 높은 것으로 나타났다. 석회를 안정화제로 이용한 경우, 비소 안정화에는 높은 효율을 나타내었으나 용출액의 pH가 10이상으로 높게 나타나 식물의 생장 및 높은 pH에 따른 비소의 재용출을 야기할 가능성이 있는 것으로 나타났다. 반면 석회석을 안정화제로 이용한 경우 용출액의 pH는 8이하로 토양에 영향을 미치지 않았고, 석회와 비슷한 비소 저감 효율을 나타내어, 농작물 재배를 고려하는 농경지의 경우 비소로 오염된 토양의 안정화에는 석회보다 석회석이 더 뛰어날 것으로 판단되었다.

The feasibility study for the stabilization process using 5 amendments was performed to quantify As-immobilization efficiency in farmland soils around Samkwang abandoned mine, Korea. For the batch experiments, with 2% and 3% of granular lime(2-5 mm in diameter), leaching concentration of As from the soil decreased by 86% and 95% respectively, compared to that without the amendment. When 5% and 10% of granular limestone was added in the soil, As concentration decreased by 82% and 95%, showing that lime and limestone has a great capability to immobilize As in the soil. From the results of batch experiments, continuous column(15 cm in dimeter and 100 cm in length) tests using granular lime and limestone as amendments was performed. Without the amendment, As concentration from the effluent of the column ranged from 167 ${\mu}g$/L to 845 ${\mu}g$/L, which were higher than Korea Drinking Water Limit(50 ${\mu}g$/L). However, only with 1% and 2% of lime, As concentration from the column dramatically decreased by 97% for 9 years rainfall and maintained below 50 ${\mu}g$/L. With 5% of limestone and the mixed amendment(1% of lime + 2% of limestone), more than 95% diminution of As leaching from the column occurred within I year rainfall and maintained below 20 ${\mu}g$/L, suggesting that the capability of limestone to immobilize As in the farmland soil was outstanding and similar to that of lime. Results of experiments suggested that As stabilization process using limestone could be more available to immobilize As from the soil than using lime because of low pH increase and thus less harmful side effect.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Alexandratos, S.D. (2007) New polymer-supported ioncomplexing agents: Design, precipitation and metal ion affinities of immobilized ligands. J. Hazard. Mater., v.139, p.467-470. https://doi.org/10.1016/j.jhazmat.2006.02.042
  2. Bothe JV. and Brown, PW. (1999) Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol., v.33, p.3806-3811. https://doi.org/10.1021/es980998m
  3. Jung, M.C. (1994) Sequential extraction of heavy metals in soils and a case study. Econ. Eviron. Geol., v.27, n.5, p.469-477.
  4. Lee, D.H. and Park, O.H. (1999) A study on the washing remediation of tailing waste and contaminated surrounding soil of abandoned metal mines. Journal of KoSES, v.4, n.2, p.87-101.
  5. Lee, M., Paik, I.S., Kim, I., Kang, H. and Lee, S. (2007) Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate. J. Hazard. Mater., v.144, p.208-214. https://doi.org/10.1016/j.jhazmat.2006.10.007
  6. Lee, M. and Chang, S.(2008) Characterization and feasibility study of the soil washing process applying to the soil having high uranium concentration in Korea. The journal of Korean Society of Soil and Groundwater Environment, v.13, n.5, p.8-19.
  7. Lee, M. and Jeon, J. (2010) Study for the satabilization of arsenic in the farmland soil by using steel making slag and limestone. Econ. Eviron. Geol., v.43, n.4, p.305- 314.
  8. Lee, W.C., Cho, H.G., Kim, Y.H. and Kim, S.O. (2009) A mineralogical study on the arsenic behavior in the tailings of Nakdong mine. J. Miner. Soc. Korea. v.22, p.359-370.
  9. Lee, W.C., Jeong, J.O., Kim, J.Y. and Kim, S.O. (2010) Characterization of arsenic immobilization in the Myungbong mine tailing. Econ. Environ. Geol., v.43, p.137-148.
  10. Li, X., Coles, B.G., Ramsey, M.H., and Thomton, I., 1994, Sequential extraction of soils for multielement analysis by ICP-AES. Chem, Geol., v.124, n.1-2, p.109- 123.
  11. Moon, D., Wazne, M., Yoon, I. and Grubb, D. (2008) Assessment of cement kilm dust (CKD)for stabilization/ solidification (S/S) of arsenic contaminated soils. J. Hazard. Mater., v.159, p.512-518. https://doi.org/10.1016/j.jhazmat.2008.02.069
  12. Navarro, M.C., Perez-Sirvent, C., Martinez-Sanchez, M.J., Vidal, J., Tovar, P.J. and Bech, J. (2008) Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor., v.96, p.183-193. https://doi.org/10.1016/j.gexplo.2007.04.011
  13. Palfy, P., Vircikova, E. and Molnar, L. (1999) Processing of arsenic waste by precipitation and solidification. Waste Management, v.19, p.55-59. https://doi.org/10.1016/S0956-053X(99)00014-8
  14. Park, M.E., Sung, J.Y., Lee, M, Lee, P.K. and Kim, M.C. (2005) Effects of pH-Eh on natural attenuation of soil contaminated by arsenic in the Dalchen mine area, Ulsan, Korea. Econ. Environ. Geol., v.38, p.513-523.
  15. Rodriguez. L., Ruiz, E., Alonso-Azcarate, J. and Rincon, J. (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J. Environ. Manage., v.90, p.1106-1116. https://doi.org/10.1016/j.jenvman.2008.04.007
  16. Roman-Ross, G., Cuello, G.J., Turrilas, X., Fernandez- Martinez, A. and Charlet, L. (2006) Arsenite sorption and co-precipitation with calcite. Chemical geology, v.233, p.328-336. https://doi.org/10.1016/j.chemgeo.2006.04.007
  17. Singh, T.S. and Pant, K.K. (2006) Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J. Hazard. Mater., v.131, p.29-36. https://doi.org/10.1016/j.jhazmat.2005.06.046
  18. Tessier, A., Campbell, P.G.C., and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal, Chem., v.51, p.844-851. https://doi.org/10.1021/ac50043a017
  19. USEPA, 1994, Toxicity characteristic leaching procedure and synthetic precipitation leaching procedure. EPA/ SW/846/1311-1312.
  20. Um, S.H. and Lee, M.H. (1963) Daeheung geological map, Korea Institute of Geoscience and Mineral Resources.
  21. Yoo, B.C., Lee, H.K. and Choi, S.G. (2002) Stable isotope, Fluid Inclusion and Mineralogical Studies of the Samkwang Gold-Silver Deposits, Republic of Korea. Econ. Eviron. Geol., v.35, n.4, p.299-316.
  22. Wang, S. and Mulligan, C.N. (2009) Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Chemosphere, v.74, p.274-279. https://doi.org/10.1016/j.chemosphere.2008.09.040

피인용 문헌

  1. Effect of postmining land use on the spatial distribution of metal(loid)s and their transport in agricultural soils: Analysis of a case study of Chungyang, South Korea vol.170, 2016, https://doi.org/10.1016/j.gexplo.2016.09.002