DOI QR코드

DOI QR Code

Enhanced Detection Sensitivity of Surface Plasmon Resonance Biosensing Based on Colocalized Target Molecules and Evanescent Fields

생체분자와 필드의 동시국소화를 통한 플라스몬 센서의 감도향상 연구

  • Lee, Won-Ju (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Oh, Young-Jin (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Dong-Hyun (School of Electrical and Electronic Engineering, Yonsei University)
  • 이원주 (연세대학교 전기전자공학부) ;
  • 오영진 (연세대학교 전기전자공학부) ;
  • 김동현 (연세대학교 전기전자공학부)
  • Received : 2011.03.16
  • Accepted : 2011.07.20
  • Published : 2011.08.25

Abstract

We have conducted a theoretical study to improve the detection limit of a surface plasmon resonance (SPR) sensor by co-localizing plasmonic fields and target molecules of interest. The fields were localized by nanograting antennas, while target molecules that participate in a molecular interaction were assumed to be co-localized by angled evaporation of a dielectric mask layer on the nanograting antennas. We have performed the evaluation using an overlap integral between distributions of plasmon fields and molecules and confirmed the correlation of the overlap with the sensitivity of an SPR sensor. Based on the calculated sensor characteristics, it was found that the sensitivity, if the fields and molecules are co-localized, can be as much as ten times that of non-colocalized structure.

본 논문에서는 국소화된 플라스몬 필드 내에 분자를 동시국소화 시키는 방법으로 플라스몬 센서의 감도를 향상시키기 위한 이론적 연구를 수행하였다. 플라스몬 필드의 국소화는 나노격자를 통하여 이루어 졌으며, 측정하고자 하는 분자 반응은 유전체 박막의 기울임 증착을 통하여 국소화되는 것으로 가정하였다. 근접장 기반의 필드와 분자 분포 간의 중복적분 값을 통하여 중복도가 플라스몬 센서의 감도와 밀접한 관련이 있는 것을 확인하였으며, 계산된 플라스몬 센서 특성에 근거하여 동시국소화된 플라스몬 센서의 경우, 동시국소화되지 않은 경우에 비하여, 10배 정도의 감도개선 효과가 있는 것을 확인하였다.

Keywords

References

  1. S. Kubitschko, J. Spinke, T. Brückner, S. Pohl, and N. Oranth, "Sensitivity enhancement of optical immunosensors with nanoparticles," Anal. Biochem. 253, 112-122 (1997). https://doi.org/10.1006/abio.1997.2337
  2. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000). https://doi.org/10.1021/ja001215b
  3. Y. Sun and Y. Xia, "Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes," Anal. Chem. 74, 5297-5305 (2002). https://doi.org/10.1021/ac0258352
  4. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, "Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor," Opt. Lett. 31, 1085-1087 (2006).
  5. J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, "Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements," Nano Lett. 10, 2755-2760 (2010). https://doi.org/10.1021/nl100125a
  6. P. P. Markowicz, W. C. Law, A. Baev, P. N. Prasad, S. Patskovsky, and A. Kabashin, "Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing," Opt. Express 15, 1745-1754 (2007). https://doi.org/10.1364/OE.15.001745
  7. Y.-D. Su, K.-C. Chiu, N.-S. Chang, H.-L. Wu, and S.-J. Chen, "Study of cell-biosubstrate contacts via surface plasmon polariton phase microscopy," Opt. Express 18, 20125-20135 (2010). https://doi.org/10.1364/OE.18.020125
  8. A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, "Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays," Anal. Chem. (in press).
  9. K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005). https://doi.org/10.1364/OPEX.13.003737
  10. D. Kim, "Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors," J. Opt. Soc. Am. A 23, 2307-2314 (2006). https://doi.org/10.1364/JOSAA.23.002307
  11. K. Kim, S. J. Yoon, and D. Kim, "Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study," Opt. Express 14, 12419-12431 (2006). https://doi.org/10.1364/OE.14.012419
  12. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, "Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires," Opt. Lett. 32, 1902-1904 (2007). https://doi.org/10.1364/OL.32.001902
  13. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, "Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings," Nanotechnol. 20, 315501 (2009). https://doi.org/10.1088/0957-4484/20/31/315501
  14. S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, "Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization," Appl. Opt. 49, 484-491 (2010). https://doi.org/10.1364/AO.49.000484
  15. K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, "Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength nanostructures," J. Opt. Soc. Am. A 26, 1027-1034 (2009). https://doi.org/10.1364/JOSAA.26.001027
  16. K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, "Targetlocalized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing," IEEE J. Select. Topics Quantum Electron. 16, 1004-1014 (2010). https://doi.org/10.1109/JSTQE.2009.2034123
  17. Y. Oh, W. Lee, amd D. Kim, "Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas," Opt. Lett. 36, 1353-1355 (2011). https://doi.org/10.1364/OL.36.001353
  18. X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings," Biosens. Bioelectron. 24, 3043-3048 (2009). https://doi.org/10.1016/j.bios.2009.03.021
  19. J. Korlach, P. J. Marks, R. L. Cicero, J. J. Gray, D. L. Murphy, D. B. Roitman, T. T. Pham, G. A. Otto, M. Foquet, and S. W. Turner, "Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures," Proc. Natl. Acad. Sci. 105, 1176-1181 (2008). https://doi.org/10.1073/pnas.0710982105
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, FL, USA, 1985).
  21. S. Elhadj, G. Singh, and R. F. Saraf, "Optical properties of an immobilized DNA monolayer from 255 to 700 nm," Langmuir 20, 5539-5543 (2004).
  22. A. Shalabney and I. Abdulhalim, "Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors," Sens. Actuators A 159, 24-32 (2010). https://doi.org/10.1016/j.sna.2010.02.005
  23. K. Kim, Y. Oh, K. Ma, E. Sim, and D. Kim, "Plasmonenhanced total internal reflection fluorescence by momentum mismatched surface nanostructures," Opt. Lett. 34, 3905-3907 (2009). https://doi.org/10.1364/OL.34.003905

Cited by

  1. Near-field Evaluation of Surface Plasmon Resonance Biosensor Sensitivity Based on the Overlap Between Field and Target Distribution vol.24, pp.2, 2013, https://doi.org/10.3807/KJOP.2013.24.2.086