
J. Korean Math. Soc. 48 (2011), No. 5, pp. 1043–1052

http://dx.doi.org/10.4134/JKMS.2011.48.5.1043

Np-SPACES

Yun-Su Kim

Abstract. We introduce a new norm, called the Np-norm (1 ≤ p < ∞)

on the space Np(V,W ) where V and W are abstract operator spaces.
By proving some fundamental properties of the space Np(V,W ), we also
discover that if W is complete, then the space Np(V,W ) is also a Banach

space with respect to this norm for 1 ≤ p < ∞.

Introduction

For abstract operator spaces V and W , a (bounded) linear map ϕ : V → W
provides another linear map ϕn : Mn(V ) → Mn(W ) defined by

ϕn((ai,j)) = (ϕ(ai,j)),

where n = 1, 2, . . . andMn(V ) denotes the normed linear space of n×nmatrices
with entries from a linear space V .

In this paper, B(H) denotes the space of all bounded operators on a Hilbert
space H with the operator norm.

Since ϕ is a bounded map, each ϕn is also bounded, and when ∥ϕ∥cb =
supn ∥ϕn∥ is finite, we call ϕ a completely bounded map. That is, if a sequence
{∥ϕn∥}∞n=1 belongs to l∞, then ϕ is said to be a completely bounded map.

W. Arveson [1] and W. Stinespring [7] introduced operator space theory
related to complete boundedness for a map ϕ : S → B(K) where S ⊂ B(H)
and H and K are Hilbert spaces. It has also developed in the 1980s through
the works of E. Effros ([2]), V. Paulsen ([3]), G. Pisier ([5]), Z. Ruan ([2]), and
G. Wittstock ([8, 9]).

Then, naturally we have the following question:

Question. When does the sequence {∥ϕn∥}∞n=1 belong to lp (1 ≤ p < ∞)?

To answer this question, in this paper, we consider lp-norm (1 ≤ p < ∞) for
the sequence {∥ϕn∥}∞n=1.
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Since

∥ϕ1∥ ≤ ∥ϕ2∥ ≤ ∥ϕ3∥ ≤ · · ·,
there is no nonzero map ϕ such that {∥ϕn∥}∞n=1 belongs to lp. To put it another
way, we define a new norm

∥ϕ∥p =

∞∑
n=1

∥ϕn∥
np

and study the space Np(V,W ) which is a vector space consisting of all linear
maps ϕ : V → W for which ∥ϕ∥p < ∞. That is, we provide a new norm ∥·∥p,
called the Np-norm, on the space Np(V,W ) (1 ≤ p < ∞).

In Section 2, we prove fundamental properties of the space Np(V,W )(1 ≤
p < ∞). In Proposition 2.2, we show that

(i) Np(V,W ) ⊂ Nq(V,W ) if 1 ≤ p ≤ q < ∞.
(ii) If ϕ : V → W is completely bounded, then ϕ ∈ Np(V,W ) for all p > 1,

and, in Proposition 2.6, we characterize a (bounded) linear map ϕ : V → W
by using the space Np(V,W ), that is, the following statements are equivalent:

(a) ϕ : V → W is a (bounded) linear map.
(b) ϕ ∈ Np(V,W ) for any p > 2.

The main results of this paper are given when W is complete as follows:

(i) (Theorem 2.8) If W is complete, then Np(V,W ) is a Banach space for
1 ≤ p < ∞.

(ii) (Corollary 2.9) IfW is complete, then the space B(V,W ) with Np-norm
is a Banach space for 2 < p < ∞.

1. Preliminaries and notation

Let Mn,m(V ) denote the linear space of n×m matrices with entries from a
linear space V and B(H1,H2) be the space of all bounded operators T : H1 →
H2 where Hi(i = 1, 2) is a Hilbert space. Any operator considered in this paper
is bounded.

We write Mn(V ) = Mn,n(V ) and if V = C, we let Mn,m = Mn,m(C). We
will denote a typical element of Mn(V ) by (vi,j).

Definition 1.1. A (concrete) operator space V on a Hilbert space is a closed
subspace of B(H).

If V is a concrete operator space, then the inclusion

Mn(V ) ⊂ Mn(B(H)) = B(Hn)

provides a norm ∥ · ∥Mn(V ) on Mn(V ), and Mn(V ) denotes the corresponding

normed space.
We define a matrix norm ∥ · ∥ on a linear space W to be an assignment of a

norm ∥ · ∥Mn(W ) on the matrix space Mn(W ) for each n ∈ N.
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Definition 1.2. An abstract operator space is a linear space W together with
a matrix norm ∥ · ∥ for which

(i) ∥v ⊕ w∥Mm+n(W ) = max{∥v∥Mm(W ) , ∥w∥Mn(W )}

and

(ii) ∥αvβ∥Mn(W ) ≤ ∥α∥ ∥v∥Mm(W ) ∥β∥

for all v ∈ Mm(W ), w ∈ Mn(W ) and α ∈ Mn,m, β ∈ Mm,n.

By a linear map on an abstract operator space V , we mean a bounded linear
map defined on V . The set of linear maps from V to W is denoted by B(V,W )
with B(V, V ) abbreviated by B(V ).

Given two abstract operator spaces V and W and a linear map ϕ : V → W ,
we also obtain a linear map ϕn : Mn(V ) → Mn(W ) defined by

(1.1) ϕn((vi,j)) = (ϕ(vi,j)).

Since ϕ is a bounded map, each ϕn is also bounded.

Definition 1.3 ([3]). If supn ∥ϕn∥ is finite, then ϕ is said to be a completely
bounded map.

If ϕ is completely bounded, then we set

∥ϕ∥cb = supn ∥ϕn∥ ,
and CB(V,W ) denotes the space of completely bounded maps from V to W .

Recall that l∞ denotes the collection of all bounded complex functions on
the positive integers. If f is a function in l∞ and

∥f∥∞ = sup{|f(n)| : n = 1, 2, . . .},

l∞ is a Banach space with respect to this norm.
Therefore, in Definition 1.3, we can also define a completely bounded map as

following:

If a sequence {∥ϕn∥}∞n=1 belongs to l∞, then ϕ is said to be a completely
bounded map.

Recall that, for 1 ≤ p < ∞, lp is the set of all complex functions g on the
positive integers such that

∞∑
i=1

|g(i)|p < ∞;

and define

∥g∥pp =
∞∑

n=1

|g(n)|p.

Then, lp is a Banach space with respect to this norm.
Thus, naturally, we have the following question:

Question. When does the sequence {∥ϕn∥}∞n=1 belong to lp (1 ≤ p < ∞)?
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Since

∥ϕ1∥ ≤ ∥ϕ2∥ ≤ ∥ϕ3∥ ≤ · · ·,
there is no nonzero map ϕ such that {∥ϕn∥}∞n=1 belongs to lp (1 ≤ p < ∞).

However, in the next section, we will introduce a new norm, called the Np-
norm, and a new space, called the Np-space, to solve this problem.

2. The Np-spaces

Let V and W be abstract operator spaces. For a linear map ϕ : V → W
and 1 ≤ p < ∞, we introduce a new norm ∥ϕ∥p and the space Np(V,W ) in the
following definition.

Definition 2.1. Let V and W be abstract operator spaces. If ϕ : V → W is
a linear map and 1 ≤ p < ∞, then define a norm

(2.1) ∥ϕ∥p =
∞∑

n=1

∥ϕn∥
np

and let the space Np(V,W ) be a vector space consisting of all linear maps
ϕ : V → W for which ∥ϕ∥p < ∞.

We can easily see that the equation (2.1) defines a norm on the Np(V,W )-
spaces, and we call ∥ϕ∥p the Np-norm of ϕ.

Since we defined a new norm, called the Np-norm, and a new space, called
Np(V,W )-space, naturally, we could ask the following question:

Whether the Np(V,W )-space is a Banach space or not with respect to the
Np-norm?

We will discuss about this problem in Theorem 2.8, and before answering
this question, we start comparing two spaces Np(V,W ) and Nq(V,W ) for pos-
itive numbers p and q such that q ≥ p. Furthermore, we compare two spaces
CB(V,W ) and Np(V,W ) for p > 1.

Note that, for any bounded linear operator φ : V → W ,

∥φ∥ (
∞∑

n=1

1

np
) ≤ ∥φ∥p .

This implies that N1(V,W ) = {0}.

Proposition 2.2. Let V and W be abstract operator spaces and ϕ : V → W
be a linear map. Then the following statements are true.

(i) If ϕ ∈ Np(V,W ) for some 1 ≤ p < ∞, then ϕ ∈ Nq(V,W ) for any q ≥ p.
Thus,

(2.2) Np(V,W ) ⊂ Nq(V,W )

if 1 ≤ p ≤ q < ∞.
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(ii) If ϕ : V → W is completely bounded, then ϕ ∈ Np(V,W ) for all p > 1.
Thus,

CB(V,W ) ⊂ Np(V,W )

for any p > 1.
(iii) If

(2.3) ∥ϕn∥ ≤ np−1−ϵ

for some ϵ > 0 and n = 1, 2, 3, . . . , then ϕ ∈ Np(V,W ).

Proof. (i) Suppose that ϕ ∈ Np(V,W ) and 1 ≤ p ≤ q. For any n = 1, 2, . . .,

∥ϕn∥
nq

≤ ∥ϕn∥
np

.

It follows that

(2.4) ∥ϕ∥q ≤ ∥ϕ∥p.

Since ϕ ∈ Np(V,W ),

∥ϕ∥p < ∞.

Thus, from inequality (2.4),

∥ϕ∥q < ∞,

that is,

ϕ ∈ Nq(V,W )

which proves the inclusion (2.2).
(ii) If ϕ : V → W is completely bounded and

∥ϕ∥cb = m,

then

∥ϕ∥p =
∞∑

n=1

∥ϕn∥
np

≤ m
∞∑

n=1

1

np
.

Since
∞∑

n=1

1

np
< ∞

for any p > 1, we conclude that

ϕ ∈ Np(V,W )

for any p > 1.
(iii) By (2.3),

∥ϕ∥p =
∞∑

n=1

∥ϕn∥
np

≤
∞∑

n=1

1

n1+ϵ
< ∞.

Thus, ϕ ∈ Np(V,W ). □
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We can easily see that the following statements are equivalent:

(a) ϕ ∈ Np(V,W ).

(b) the sequence {∥ϕn∥
1
p

n }∞n=1 belongs to lp for 1 ≤ p < ∞.

Therefore, since, for 1 ≤ p ≤ q < ∞,

lp ⊂ lq,

we can also provide another proof of Proposition 2.2(i). We will leave it as an
exercise for the reader.

Proposition 2.3 ([2]). If V is an abstract operator space and φ : V → Mn is
a linear map, then

(2.5) ∥φn∥ = ∥φ∥cb .

Therefore, every φ : V → Mn in B(V,Mn) is completely bounded so that
CB(V,Mn) = B(V,Mn). Furthermore, in the next corollary, we will show that
CB(V,Mn) = Np(V,Mn) = B(V,Mn) for p > 1.

Corollary 2.4. If V is an abstract operator space and φ : V → Mn is a linear
map, then for p > 1,

φ ∈ Np(V,Mn)

and

(2.6) ∥φ∥p ≤ ∥φ∥cb
∞∑
k=1

1

kp
.

Furthermore, for p > 1,

CB(V,Mn) = Np(V,Mn) = B(V,Mn).

In particular, for n = 1,

(2.7) ∥φ∥p = ∥φ∥
∞∑
k=1

1

kp
.

Proof. By Proposition 2.3,

∥φ1∥ ≤ ∥φ2∥ ≤ · · · ≤ ∥φn∥ = ∥φn+1∥ = · · · = ∥φ∥cb .
It follows that

(2.8) ∥φ∥p =

∞∑
k=1

∥φk∥
kp

≤
∞∑
k=1

∥φ∥cb
kp

= ∥φ∥cb
∞∑
k=1

1

kp
.

By Proposition 2.3 and (2.8), we conclude that

CB(V,Mn) = Np(V,Mn) = B(V,Mn) for p > 1.

If n = 1, then φ is a linear functional. Thus, by Proposition 2.3, clearly, the
equation (2.7) is true. □



Np-SPACES 1049

Therefore,
B(V,C) ⊂ Np(V,C)

for p > 1.

Proposition 2.5 ([5]). Let V and W be abstract operator spaces and ϕ : V →
W be a linear map. Then,

(2.9) ∥ϕn∥ ≤ n ∥ϕ∥ .

As an example, if we let τ denote the transpose map on B(l2), then τ is an
isometry, but ∥τn∥ = n. It follows that τ ∈ Np(B(l2)) for 2 < p < ∞, but τ is
not contained in Np(B(l2)) for 1 < p ≤ 2.

Proposition 2.6. Let V and W be abstract operator spaces. Then the following
statements are equivalent:

(i) ϕ : V→W is a linear map, that is, ϕ ∈ B(V,W ).
(ii) ϕ ∈ Np(V,W ) for any p > 2.

Proof. (i) ⇒ (ii). By (2.9),

(2.10)
∥ϕn∥
np

≤ ∥ϕ∥
np−1

for any p > 2. From the inequality (2.10),

(2.11) ∥ϕ∥p =
∞∑

n=1

∥ϕn∥
np

≤
∞∑

n=1

∥ϕ∥
np−1

for any p > 2.
Since ϕ ∈ B(V,W ), we have

∞∑
n=1

∥ϕ∥
np−1

< ∞

for any p > 2. From (2.11), we conclude that

ϕ ∈ Np(V,W )

for any p > 2.
(ii) ⇒ (i). Since ϕ ∈ Np(V,W ) for any p > 2,

∥ϕ∥p =
∞∑

n=1

∥ϕn∥
np

= ∥ϕ1∥+
∞∑

n=2

∥ϕn∥
np

< ∞.

It follows that
∥ϕ1∥ = ∥ϕ∥ < ∞.

Thus, ϕ ∈ B(V,W ). □
By Proposition 2.6, we have the following conclusion:

Corollary 2.7. Let V and W be abstract operator spaces. Then,

B(V,W ) = Np(V,W ) for 2 < p < ∞.
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From Proposition 2.2(i) and Proposition 2.6, for every bounded map ϕ :
V → W , we can find a real number rϕ ≥ 1 defined by

rϕ = inf{p : ϕ ∈ Np(V,W ) and 1 ≤ p < ∞}.
The number rϕ is called the index of ϕ. Clearly,

1 ≤ rϕ ≤ 2.

Finally, in the next theorem, we provide a sufficient condition for the space
Np(V,W ) to be complete with respect to the Np-norm.

Theorem 2.8. Let V and W be abstract operator spaces. If W is complete,
then Np(V,W ) is a Banach space for 1 ≤ p < ∞.

Proof. Suppose that W is complete. Let {φ(l)}∞l=1 be a Cauchy sequence in
Np(V,W ) for a fixed p ∈ [1,∞) and ϵ > 0 be given. Then there is a natural
number N(ϵ) such that for all natural numbers n,m ≥ N(ϵ), we have

(2.12)
∥∥φ(n) − φ(m)

∥∥
p
=

∞∑
k=1

∥∥(φ(n) − φ(m))k
∥∥

kp
< ϵ.

Since

(2.13)
∥∥φ(n) − φ(m)

∥∥ ≤
∥∥φ(n) − φ(m)

∥∥
p
,

{φ(l)}∞l=1 is also a Cauchy sequence in B(V,W ).
Since W is complete, so is B(V,W ). It follows that there is a bounded

operator φ ∈ B(V,W ) such that

(2.14) lim
l→∞

∥∥φ(l) − φ
∥∥ = 0.

Let k ∈ {1, 2, 3, . . .} be given. It follows from (2.12) that∥∥(φ(n) − φ(m))k
∥∥ ≤ kpϵ

for all natural numbers n,m ≥ N(ϵ).
Thus, for any v = [vij ] ∈ Mk(V ),

(2.15)
∥∥(φ(n) − φ(m))k(v)

∥∥ ≤
∥∥(φ(n) − φ(m))k

∥∥ ∥v∥ ≤ kpϵ ∥v∥
if n,m ≥ N(ϵ).

Since φ(n)(vi,j) converges to φ(vi,j) in W , (2.15) implies that

(2.16)
∥∥(φ− φ(m))k(v)

∥∥ ≤ kpϵ ∥v∥
if m ≥ N(ϵ). It follows from (2.16) that

(2.17)
∥∥(φ− φ(m))k

∥∥ ≤ kpϵ

if m ≥ N(ε).
Since ϵ is arbitrary, we have

(2.18) lim
m→∞

∥∥(φ(m) − φ)k
∥∥ = lim

m→∞

∥∥(φ− φ(m))k
∥∥ = 0

for any k ∈ {1, 2, 3, . . .}.
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By triangle inequality,∥∥(φ(n) − φ(m))k
∥∥−

∥∥(φ(n) − φ)k
∥∥ ≤

∥∥(φ(m) − φ)k
∥∥

and
−
∥∥(φ(m) − φ)k

∥∥ ≤
∥∥(φ(n) − φ(m))k

∥∥−
∥∥(φ(n) − φ)k

∥∥ ,
that is,

|
∥∥(φ(n) − φ(m))k

∥∥−
∥∥(φ(n) − φ)k

∥∥ | ≤ ∥∥(φ(m) − φ)k
∥∥ .

By the equation (2.18), we conclude that

(2.19) lim
m→∞

∥∥(φ(n) − φ(m))k
∥∥ =

∥∥(φ(n) − φ)k
∥∥

for any n and k in {1, 2, 3, . . .}.
Let n ≥ N(ϵ) be given and {uk}∞k=1 be a sequence of functions defined on

{1, 2, 3, . . .} by

uk(m) =

∥∥(φ(n) − φ(m))k
∥∥

kp
.

Since {φ(l)}∞l=1 is a Cauchy sequence in Np(V,W ), the equations (2.12),
(2.18), and (2.19) imply that if n ≥ N(ϵ), then

lim
m→∞

∥∥φ(n) − φ(m)

∥∥
p
= lim

m→∞

∞∑
k=1

∥∥(φ(n) − φ(m))k
∥∥

kp
= lim

m→∞

∞∑
k=1

uk(m)

=
∞∑
k=1

lim
m→∞

uk(m) =
∞∑
k=1

lim
m→∞

∥∥(φ(n) − φ(m))k
∥∥

kp

=

∞∑
k=1

∥∥(φ(n) − φ)k
∥∥

kp
,

that is, if n ≥ N(ϵ) and p ∈ [1,∞),

(2.20) lim
m→∞

∥∥φ(n) − φ(m)

∥∥
p
=

∥∥φ(n) − φ
∥∥
p
.

From (2.12) and (2.20), we can conclude that

lim
n→∞

∥∥φ(n) − φ
∥∥
p
= 0,

and so φ(n) → φ in Np-norm.
Thus, there is a natural number n0 such that

(2.21)
∥∥φ(n0) − φ

∥∥
p
≤ ϵ,

and so by triangle inequality and the inequality (2.21), we have

∥φ∥p =

∞∑
k=1

∥φk∥
kp

≤
∞∑
k=1

∥∥(φ(n0))k − φk

∥∥+
∥∥(φ(n0))k

∥∥
kp

=
∥∥φ(n0) − φ

∥∥
p
+
∥∥φ(n0)

∥∥
p
≤ ϵ+

∥∥φ(n0)

∥∥
p
.

Since φ(n0) ∈ Np(V,W ), i.e.,
∥∥φ(n0)

∥∥
p
< ∞, we have

∥φ∥p < ∞.
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Thus,
φ ∈ Np(V,W ).

Therefore, Np(V,W ) is complete for 1 ≤ p < ∞. □
Corollary 2.9. Let V and W be abstract operator spaces and W be complete.
Then the space B(V,W ) with Np-norm is a Banach space for 2 < p < ∞.

Proof. By Corollary 2.7 and Theorem 2.8, it is clear. □
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