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REPRESENTING SEQUENCES ON

PARABOLIC BERGMAN SPACES

Yôsuke Hishikawa

Abstract. The parabolic Bergman space is the set of Lp(λ)-solutions

of the parabolic operator L(α). In this paper, we study representing
sequences on parabolic Bergman spaces. We establish a discrete version of
the reproducing formula on parabolic Bergman spaces by using fractional

derivatives of the fundamental solution of the parabolic operator.

1. Introduction

Let H be the upper half-space of the (n + 1)-dimensional Euclidean space
Rn+1(n ≥ 1), that is, H = {(x, t) ∈ Rn+1;x ∈ Rn, t > 0}. For 0 < α ≤ 1, the
parabolic operator L(α) is defined by

L(α) = ∂t + (−∆x)
α,

where ∂t = ∂/∂t and ∆x is the Laplacian with respect to x. Let C(H) be
the set of all real-valued continuous functions on H. For a positive integer k,
Ck(H) denotes the set of all k times continuously differentiable functions on
H, and put C∞(H) = ∩kC

k(H). Furthermore, let C∞
c (H) be the set of all

functions in C∞(H) with compact support. A function u ∈ C(H) is said to be
L(α)-harmonic if L(α)u = 0 in the sense of distributions (for details, see Section
2). For 1 ≤ p < ∞ and λ > −1, Lp(λ) is the set of all Lebesgue measurable
functions f on H which satisfy

∥f∥Lp(λ) :=

(∫
H

|f(x, t)|ptλdV (x, t)

) 1
p

<∞,

where dV is the Lebesgue volume measure on H. The parabolic Bergman space
bpα(λ) is the set of all L(α)-harmonic functions u on H which belong to Lp(λ).
We remark that bpα(λ) is a Banach space with the norm ∥ · ∥Lp(λ), and bp1/2(λ)

coincides with the harmonic Bergman space of Ramey and Yi [9]. Also, we
note that bpα(λ) = {0} when λ ≤ −1 (see Proposition 4.3 of [4]).
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Our aim of this paper is the study of representing sequences on parabolic
Bergman spaces. In [3], we established the reproducing formula on parabolic
Bergman spaces by using fractional derivatives of the fundamental solution
of the parabolic operator L(α). The reproducing formula of [3] is given by
the integral of parabolic Bergman functions (see Theorem A below). In this
paper, we study a discrete version of the reproducing formula, which is given
by representing sequences.

We give some notations. For a real number κ, let Dκ
t = (−∂t)κ be the frac-

tional differential operator, andW (α) the fundamental solution of the parabolic
operator L(α) (for the explicit definitions of Dκ

t and W (α), see Section 2). In
[3], the following reproducing formula on bpα(λ) is given.

Theorem A (Theorem 4.7 of [3]). Let 0 < α ≤ 1, 1 ≤ p < ∞, and λ > −1.
And let κ > λ+1

p be a real number. Then the reproducing formula

(1.1) u(x, t) = Cκ

∫
H

u(x, t)Dκ
tW

(α)(x− y, t+ s)tκ−1dV (y, s)

holds for all u ∈ bpα(λ) and (x, t) ∈ H, where Cκ = 2κ/Γ(κ) and Γ(·) is
the gamma function. Moreover, the reproducing formula (1.1) also holds when
p = 1 and κ = λ+ 1.

To state our main results, we give some definitions. Let 0 < α ≤ 1, 1 ≤
p <∞, λ > −1, and κ be a real number. Furthermore, let X = {(xj , tj)} be a
sequence in H. For a sequence of real numbers {ηj}, we define a representing
operator Uκ

p,X by

(1.2)

Uκ
p,X({ηj})(x, t) =

∑
j

ηjt
n
2α+κ−( n

2α+λ+1) 1
p

j Dκ
tW

(α)(x− xj , t+ tj), (x, t) ∈ H.

By using the representing operator Uκ
p,X, we define a representing sequence on

bpα(λ).

Definition 1. Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and κ be a real number.
A sequence X = {(xj , tj)} in H is called the bpα(λ)–representing sequence of
order κ if Uκ

p,X : ℓp → bpα(λ) is bounded and onto. Explicitly, a sequence X
is called the bpα(λ)–representing sequence of order κ if the following conditions
are satisfied.

(1) For {ηj} ∈ ℓp, the function Uκ
p,X({ηj}) belongs to bpα(λ), and there exists

a constant C > 0 such that ∥Uκ
p,X({ηj})∥Lp(λ) ≤ C∥{ηj}∥ℓp for all {ηj} ∈ ℓp.

(2) For u ∈ bpα(λ), there exists {ηj} ∈ ℓp such that u = Uκ
p,X({ηj}) on H.

For 0 < δ < 1 and (x, t) ∈ H, an α-parabolic cylinder S
(α)
δ is defined by

S
(α)
δ (x, t) =

{
(y, s) ∈ H; |y − x| <

(
2δ

1− δ2
t

)1/2α

,
1− δ

1 + δ
t < s <

1 + δ

1− δ
t

}
.
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A sequence {(xj , tj)} in H is said to be δ-separated in the α-parabolic sense

if S
(α)
δ (xj , tj) ∩ S(α)

δ (xi, ti) = ∅ for j ̸= i. Furthermore, a sequence {(xj , tj)}
in H is said to be a δ-lattice in the α-parabolic sense if {(xj , tj)} satisfies the
following;

(i) ∪jS
(α)
δ (xj , tj) = H.

(ii) For some 0 < ε < δ, {(xj , tj)} is ε-separated in the α-parabolic sense.

The following theorems are the main results of this paper.

Theorem 1. Let 0 < α ≤ 1, 1 < p < ∞, λ > −1, and κ > λ+1
p be a real

number. Furthermore, let X = {(xj , tj)} be a sequence in H. Then, Uκ
p,X

satisfies the condition (1) of Definition 1 if and only if for any 0 < δ < 1, there
exists K ∈ N such that X = X1 ∪ · · · ∪XK and each sequence Xi is δ-separated
in the α-parabolic sense. The “if” part also holds when p = 1.

Theorem 2. Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and κ > λ+1
p be a real

number. Then, there exists 0 < δ0 < 1 such that if a sequence X in H is a δ-
lattice in the α-parabolic sense with 0 < δ ≤ δ0, then X is a bpα(λ)-representing
sequence of order κ.

By Theorem 2 and the open mapping theorem, we obtain the following
corollary.

Corollary 1. Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and κ > λ+1
p be a

real number. Then, there exists a sequence X = {(xj , tj)} in H such that the
following properties hold:

(1) For {ηj} ∈ ℓp, the function u = Uκ
p,X({ηj}) belongs to bpα(λ), and there

exists a constant C > 0 such that

∥u∥Lp(λ) ≤ C∥{ηj}∥ℓp

for all {ηj} ∈ ℓp.
(2) For u ∈ bpα(λ), there exists {ηj} ∈ ℓp such that u = Uκ

p,X({ηj}) on H.
Moreover, there exists a constant C > 0 independent of u such that

∥{ηj}∥ℓp ≤ C∥u∥Lp(λ).

This paper is constructed as follows. In Section 2, we present basic properties
of parabolic Bergman functions. In Section 3, we study Carleson inequalities on
parabolic Bergman spaces with fractional derivatives. The results of Carleson
inequalities shall be used for the proof of Theorem 1. In Section 4, we give the
proof of Theorem 1. In Section 5, we give our representation theorem, that
is, we show Theorem 2. In Section 6, we give the definition of bpα(λ)-sampling
sequences, and we show that bpα(λ)-representing sequences are closely related
to bpα(λ)-sampling sequences.

Throughout this paper, we will denote by C a positive constant whose value
may not necessarily be the same at each occurrence.
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2. Preliminaries

In this section, we present preliminary results. We recall the definition of
L(α)-harmonic functions. We describe the operator (−∆x)

α. Since the case
α = 1 is trivial, we only describe the case 0 < α < 1. For 0 < α < 1, (−∆x)

α

is the convolution operator defined by

(2.1) (−∆x)
αψ(x, t) = −cn,α lim

δ→0+

∫
|y−x|>δ

(ψ(y, t)− ψ(x, t))|y − x|−n−2αdy

for all ψ ∈ C∞
c (H) and (x, t) ∈ H, where cn,α = −4απ−n/2Γ((n+2α)/2)/Γ(−α)

> 0. A function u ∈ C(H) is said to be L(α)-harmonic on H if u satisfies the
following condition: for every ψ ∈ C∞

c (H),∫
H

|u · L̃(α)ψ|dV <∞ and

∫
H

u · L̃(α)ψdV = 0,

where L̃(α) = −∂t + (−∆x)
α is the adjoint operator of L(α). By (2.1) and

the compactness of supp(ψ) (the support of ψ), there exist 0 < t1 < t2 <

∞ and a constant C > 0 such that supp(L̃(α)ψ) ⊂ S = Rn × [t1, t2] and

|L̃(α)ψ(x, t)| ≤ C(1 + |x|)−n−2α for all (x, t) ∈ S. Thus, the integrability

condition
∫
H
|u · L̃(α)ψ|dV <∞ is equivalent to the following: for any 0 < t1 <

t2 <∞,

(2.2)

∫ t2

t1

∫
Rn

|u(x, t)|(1 + |x|)−n−2αdV (x, t) <∞.

We introduce the fundamental solution of L(α). For x ∈ Rn, the fundamental
solution W (α) of L(α) is defined by

W (α)(x, t) =


1

(2π)n

∫
Rn

exp(−t|ξ|2α +
√
−1 x · ξ) dξ, t > 0

0, t ≤ 0,

where x · ξ denotes the inner product on Rn. It is known that W (α) is L(α)-
harmonic on H and W (α) ∈ C∞(H).

We present definitions of fractional integral and differential operators. Let
C(R+) be the set of all continuous functions on R+ = (0,∞). For a positive
real number κ, let FC−κ be the set of all functions φ ∈ C(R+) such that there
exists a constant ε > 0 with φ(t) = O(t−κ−ε) as t → ∞. We remark that
FC−ν ⊂ FC−κ if 0 < κ ≤ ν. For φ ∈ FC−κ, we can define the fractional
integral of φ with order κ by

(2.3) D−κ
t φ(t) =

1

Γ(κ)

∫ ∞

0

τκ−1φ(t+ τ)dτ, t ∈ R+.

Furthermore, let FCκ be the set of all functions φ ∈ C(R+) such that ∂
⌈κ⌉
t φ ∈

FC−(⌈κ⌉−κ), where ⌈κ⌉ is the smallest integer greater than or equal to κ. In
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particular, we will write FC0 = C(R+). For φ ∈ FCκ, we can also define the
fractional derivative of φ with order κ by

(2.4) Dκ
t φ(t) = D−(⌈κ⌉−κ)

t (−∂t)⌈κ⌉φ(t), t ∈ R+.

Also, we define D0
tφ = φ. We may often call both (2.3) and (2.4) the fractional

derivative of φ with order κ. Moreover, we call Dκ
t the fractional differential

operator with order κ.
We describe basic properties of fractional derivatives of the fundamental

solution W (α), which are given in [3]. Let N0 = N ∪ {0}. For a multi-index
β = (β1, . . . , βn) ∈ Nn

0 , let ∂
β
x = ∂|β|/∂x1

β1 · · · ∂xnβn , where |β| = β1+ · · ·+βn.
The following lemma is given by Theorem 3.1 of [3].

Lemma 2.1 (Theorem 3.1 of [3]). Let 0 < α ≤ 1, β ∈ Nn
0 , and κ > − n

2α be a
real number. Then, the following statements hold.

(1) The derivatives ∂βxDκ
tW

(α) and Dκ
t ∂

β
xW

(α) are well-defined, and

∂βxDκ
tW

(α)(x, t) = Dκ
t ∂

β
xW

(α)(x, t)

for all (x, t) ∈ H. Moreover, there exists a constant C > 0 such that

|∂βxDκ
tW

(α)(x, t)| ≤ C(t+ |x|2α)−
n+|β|

2α −κ

for all (x, t) ∈ H.
(2) Let ν be a real number such that κ+ ν > − n

2α . Then,

Dν
t ∂

β
xDκ

tW
(α)(x, t) = ∂βxDκ+ν

t W (α)(x, t)

for all (x, t) ∈ H.
(3) ∂βxDκ

tW
(α) is L(α)-harmonic on H.

We also note that ∂βxDκ
tW

(α)(−x, t) = (−1)|β|∂βxDκ
tW

(α)(x, t) by the defi-
nition of W (α).

For (x, t) ∈ H, the α-parabolic Carleson box Q(α) is defined by

Q(α)(x, t) =
{
(y, s) ∈ H; |yj − xj | < 2−1t1/2α (1 ≤ j ≤ n), t ≤ s ≤ 2t

}
.

Clearly, we have V (Q(α)(x, t)) = Ct
n
2α+1 for all (x, t) ∈ H. The α-parabolic

Carleson boxes are used in the study of Carleson inequalities on bpα(λ) in Section

3. The following lemma shows that Q(α) is nearly S
(α)
δ .

Lemma 2.2 (Lemma 3.2 of [7]). For any 0 < δ < 1, there exist positive integers
M1,M2 and constants C1, C2 > 0 with the following properties:

(1) For each (y, s) ∈ H, there exist points {(yj , sj)} ⊂ H (j = 1, 2, . . . ,M1)
such that

Q(α)(y, s) ⊂
M1∪
j=1

S
(α)
δ (yj , sj) and s ≤ sj ≤ C1s.
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(2) For each (y, s) ∈ H, there exist points {(yj , sj)} ⊂ H (j = 1, 2, . . . ,M2)
such that

S
(α)
δ (y, s) ⊂

M2∪
j=1

Q(α)(yj , sj) and
1

C2
s ≤ sj ≤ C2s.

In [3], we also give the lower estimate of fractional derivatives of W (α) on
Q(α).

Lemma 2.3 (Proposition 3.2 of [3]). Let 0 < α ≤ 1, β ∈ Nn
0 , and κ > − n

2α be
a real number. If each βj is even, then there exist constants ρ,C > 0 such that

C−1s−
n+|β|

2α −κ ≤ |∂βxDκ
tW

(α)(x− y, t+ s)| ≤ Cs−
n+|β|

2α −κ

for all (x, t) ∈ Q(α)(y, ρs), where ρ and C depend on n, α, β and κ.

We describe basic properties of fractional derivatives of parabolic Bergman
functions.

Lemma 2.4 (Proposition 4.1 of [3]). Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1,
β ∈ Nn

0 , and κ > −( n
2α + λ + 1) 1p be a real number. If u ∈ bpα(λ), then the

following statements hold:
(1) The derivatives ∂βxDκ

t u and Dκ
t ∂

β
xu are well-defined, and

∂βxDκ
t u(x, t) = Dκ

t ∂
β
xu(x, t)

for all (x, t) ∈ H. Moreover, there exists a constant C > 0 such that

|∂βxDκ
t u(x, t)| ≤ Ct−

|β|
2α −κ−( n

2α+λ+1) 1
p ∥u∥Lp(λ)

for all (x, t) ∈ H.
(2) Let ν be a real number such that κ+ ν > −( n

2α + λ+ 1) 1p . Then,

Dν
t ∂

β
xDκ

t u(x, t) = ∂βxDκ+ν
t u(x, t)

for all (x, t) ∈ H.
(3) ∂βxDκ

t u is L(α)-harmonic on H.

In [3], the following reproducing formula on parabolic Bergman spaces is
given, which is the generalization of Theorem A.

Lemma 2.5 (Theorem 5.2 of [3]). Let 0 < α ≤ 1, 1 < p < ∞, and λ > −1.
Also, let ν > −λ+1

p and κ > λ+1
p be real numbers. Then, the reproducing

formula

(2.5) u(x, t) = Cν+κ

∫
H

Dν
t u(y, s)Dκ

tW
(α)(x− y, t+ s)sν+κ−1dV (y, s)

holds for all u ∈ bpα(λ) and (x, t) ∈ H. Moreover, the reproducing formula (2.5)
also holds when p = 1 and κ = λ+ 1.

We need the following duality theorem on parabolic Bergman spaces, which
is used in Section 4.
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Lemma 2.6 ((2) of Corollary 3.2 of [4]). Let 0 < α ≤ 1, 1 < p < ∞, and
λ > −1. And let q be the exponent conjugate to p. Then, (bpα(λ))

∗ ≃ bqα(λ)
under the integral pairing

⟨u, v⟩λ =

∫
H

u(x, t)v(x, t)tλdV (x, t), u ∈ bpα(λ), v ∈ bqα(λ).

For κ, θ, σ ∈ R and f ∈ Lp(σ), let

Ψκ,θ
α f(x, t) :=

∫
H

|f(y, s)| sθ

(t+ s+ |x− y|2α) n
2α+κ

dV (y, s), (x, t) ∈ H.

In the proof of (1) of Theorem 3.1 of [4], the authors show the following result,
which is used in our argument.

Lemma 2.7 (Theorem 3.1 of [4]). Let 0 < α ≤ 1, 1 ≤ p < ∞, and σ ∈ R.
Suppose that κ, θ ∈ R with κ > − n

2α satisfy

σ − θp < p− 1 < κp+ σ − θp.

Then, there exists a constant C > 0 such that

∥Ψκ,θ
α f∥Lp(η) ≤ C∥f∥Lp(σ)

for all f ∈ Lp(σ), where η = (κ− θ − 1)p+ σ.

3. Carleson inequalities with fractional derivatives

Let γ ∈ Nn
0 and ν, ρ, σ ∈ R. We say that a positive Borel measure µ on

H satisfies a Carleson inequality on bpα(λ) with fractional derivatives if there
exists a constant C > 0 such that∫

H

|∂γxDν
t u(x, t)|pdµ(x, t) ≤ C

∫
H

|Dρ
t u(x, t)|ptσdV (x, t)

for all u ∈ bpα(λ). In this section, we study the Carleson inequalities on bpα(λ)
with fractional derivatives. A result obtained by the study of the Carleson
inequalities on bpα(λ) should be used for the proof of Theorem 1. First, we
show the following lemma, which is an important tool for the proof of the main
theorem in this section.

Lemma 3.1. Let 0 < α ≤ 1 and θ, c ∈ R. If there exist constants ε,M > 0
such that

n

2α
< θ + ε < c, and µ(Q(α)(x, t)) ≤Mtε

for all (x, t) ∈ H, then there exists a constant C > 0 such that∫
H

sθ

(t+ s+ |x− y|2α)c
dµ(y, s) ≤ Ctθ+ε−c

for all (x, t) ∈ H.
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Proof. Let (x, t) ∈ H be fixed. For a multi-index γ = (γ1, . . . , γn) ∈ Zn and
m ∈ Z, we define Qγ,m by

Qγ,m := { (y, s) ∈ H; γj(2
mt)

1
2α ≤ xj − yj < (γj + 1)(2mt)

1
2α (1 ≤ j ≤ n),

2mt ≤ s < 2m+1t}.

Then, {Qγ,m} is a set of α-parabolic Carleson boxes, and H = ∪Qγ,m. More-

over, since µ(Q(α)(x, t)) ≤ Mtε, we have µ(Qγ,m) ≤ M(2mt)ε. Hence, we
obtain ∫

H

sθ

(t+ s+ |x− y|2α)c
dµ(y, s)

=

∫
∪Qγ,m

sθ

(t+ s+ |x− y|2α)c
dµ(y, s)

=
∑
m∈Z

∑
γ∈Zn

∫
Qγ,m

sθ

(t+ s+ |x− y|2α)c
dµ(y, s)

≤ C
∑
m∈Z

∑
γ∈Zn

(2mt)θ

(t+ 2mt+ 2mt(γ21 + · · ·+ γ2n)
α)c

µ(Qγ,m)

≤ CM
∑
m∈Z

∑
γ∈Zn

(2mt)θ+ε

(t+ 2mt+ 2mt(γ21 + · · ·+ γ2n)
α)c

= CMtθ+ε−c
∑
m∈Z

2m(θ+ε−c)
∑
γ∈Zn

1

(2−m + 1 + (γ21 + · · ·+ γ2n)
α)c

.

By elementary calculations, we have∑
γ∈Zn

1

(2−m + 1 + (γ21 + · · ·+ γ2n)
α)c

≤ C

∫
Rn

1

(2−m + 1 + |x|2α)c
dx

≤ C(2−m + 1)
n
2α−c

∫ ∞

0

η
n

2αc−1

1 + η
dη ≤ C(2−m + 1)

n
2α−c.

Since 2−m + 1 ≥ 1 (m ≥ 0) and 2−m + 1 ≥ 2−m (m < 0), we obtain∫
H

sθ

(t+ s+ |x− y|2α)c
dµ(y, s)

≤ Ctθ+ε−c

∑
m≥0

2m(θ+ε−c) +
∑
m<0

2m(θ+ε− n
2α )

 .
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Because
n

2α
< θ + ε < c, we conclude∫

H

sθ

(t+ s+ |x− y|2α)c
dµ(y, s) ≤ Ctθ+ε−c.

Thus, this completes the proof. □

If µ is the Lebesgue volume measure V on H, then there exists a constant
M > 0 such that µ(Q(α)(x, t)) = Mt

n
2α+1 for all (x, t) ∈ H. Therefore by

Lemma 3.1, we have the following corollary.

Corollary 3.2. Let 0 < α ≤ 1 and θ > −1. If a constant c > 0 satisfies the
condition n

2α + θ + 1 < c, then there exists a constant C > 0 such that∫
H

sθ

(t+ s+ |x− y|2α)c
dV (y, s) ≤ Ct

n
2α+θ+1−c

for all (x, t) ∈ H.

In order to prove the main theorem of this section, we also give the following
lemma.

Lemma 3.3. Let 0 < α ≤ 1, 1 ≤ p < ∞, and λ > −1. Furthermore, let
γ ∈ Nn

0 , ν, ρ > −λ+1
p , σ ∈ R, and µ be a positive Borel measure on H. Suppose

η ∈ R and κ > λ+1
p satisfy the condition

−|γ|
2α

− ν <
η

p
− ρ < κ.

If there exists a constant M > 0 such that

Fp(x, t)

:= sρ+κ−σ−1+
η(p−1)

p

∫
H

|∂γxDν+κ
t W (α)(x− y, t+ s)|t−(

|γ|
2α +ν−ρ+ η

p )(p−1)dµ(x, t)

≤ M

for all (y, s) ∈ H, then there exists a constant C > 0 such that

(3.1)

∫
H

|∂γxDν
t u(x, t)|pdµ(x, t) ≤ C

∫
H

|Dρ
t u(x, t)|ptσdV (x, t)

for all u ∈ bpα(λ).

Proof. Let u ∈ bpα(λ). Differentiating through the integral (2.5), Lemma 2.5
and the Fubini theorem imply that
(3.2)

∂γxDν
t u(x, t)

= Cρ+κ

∫
H

Dρ
t u(y, s)∂

γ
xDν+κ

t W (α)(x− y, t+ s)sρ+κ−1dV (y, s), (x, t) ∈ H.
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We show (3.1) when 1 < p < ∞. Let q be the exponent conjugate to p. Then
by (3) and the Hölder inequality, we have

|∂γxDν
t u(x, t)|p

≤ C

(∫
H

|Dρ
t u(y, s)||∂γxDν+κ

t W (α)(x− y, t+ s)|sρ+κ−1dV (y, s)

)p

= C

(∫
H

|Dρ
t u(y, s)||∂γxDν+κ

t W (α)(x− y, t+ s)|s
η
pq s−

η
pq sρ+κ−1dV (y, s)

)p

≤ C

∫
H

|Dρ
t u(y, s)|p|∂γxDν+κ

t W (α)(x− y, t+ s)|sρ+κ−1+ η
q dV (y, s)

×
(∫

H

|∂γxDν+κ
t W (α)(x− y, t+ s)|sρ+κ−1− η

p dV (y, s)

) p
q

.

Since − |γ|
2α − ν < η

p − ρ < κ, Corollary 3.2 implies that(∫
H

|∂γxDν+κ
t W (α)(x− y, t+ s)|sρ+κ−1− η

p dV (y, s)

) p
q

≤ Ct−(
|γ|
2α +ν−ρ+ η

p )
p
q

for all (x, t) ∈ H. Hence by the Fubini theorem, we obtain∫
H

|∂γxDν
t u(x, t)|pdµ(x, t) ≤ C

∫
H

|Dρ
t u(y, s)|pFp(y, s)s

σdV (y, s).

Because Fp(y, s) ≤M for all (y, s) ∈ H, we conclude (3.1) when 1 < p <∞.
We show (3.1) when p = 1. By (3) and the Fubini theorem, we have∫

H

|∂γxDν
t u(x, t)|dµ(x, t) ≤ C

∫
H

|Dρ
t u(y, s)|F1(y, s)s

σdV (y, s).

Because F1(y, s) ≤M for all (y, s) ∈ H, we conclude (3.1) when p = 1. □
Now, we show the main theorem of this section. We give necessary and

sufficient conditions for a measure µ to satisfy the Carleson inequality on bpα(λ)
with fractional derivatives.

Theorem 3.4. Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and µ be a positive Borel
measure on H. Furthermore, let γ ∈ Nn

0 , ν, ρ > −λ+1
p , and σ > −1 be real

numbers such that σ+1+
(

|γ|
2α + ν − ρ

)
p > 0. Then, the following statements

are equivalent:
(1) There exists a constant C1 > 0 such that

(3.3)

∫
H

|∂γxDν
t u(x, t)|pdµ(x, t) ≤ C1

∫
H

|Dρ
t u(x, t)|ptσdV (x, t)

for all u ∈ bpα(λ).
(2) For 0 < δ < 1, there exists a constant C2 > 0 such that

µ(S
(α)
δ (x, t)) ≤ C2t

n
2α+σ+1+(

|γ|
2α +ν−ρ)p

for all (x, t) ∈ H.
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(3) There exists a constant C3 > 0 such that

µ(Q(α)(x, t)) ≤ C3t
n
2α+σ+1+(

|γ|
2α +ν−ρ)p

for all (x, t) ∈ H.

Proof. (1) ⇒ (3). We assume that µ satisfies (3.3) of (1). Let κ be a real
number such that

κ > max

{
λ+ 1

p
,
( n
2α

+ σ + 1
) 1

p
− n+ |γ|

2α
− ρ

}
.

Let (y, s) ∈ H be fixed. And we put u(x, t) = ∂γxDκ
tW

(α)(x − y, t + s) for all
(x, t) ∈ H. Then, Lemma 2.1 and Corollary 3.2 imply that u ∈ bpα(λ). Also by
Lemma 2.3, there exist constants τ, C > 0 such that

|∂γxDν
t u(x, t)| = |∂2γx Dν+κ

t W (α)(x− y, t+ s)| ≥ Cs−
n+2|γ|

2α −ν−κ

for all (x, t) ∈ Q(α)(y, τs). Therefore, we obtain∫
H

|∂γxDν
t u(x, t)|pdµ(x, t) ≥

∫
Q(α)(y,τs)

|∂2γx Dν+κ
t W (α)(x− y, t+ s)|pdµ(x, t)

≥ Cs−(
n+2|γ|

2α +ν+κ)p

∫
Q(α)(y,τs)

dµ(x, t)

= Cs−(
n+2|γ|

2α +ν+κ)pµ(Q(α)(y, τs)).(3.4)

Moreover, since σ > −1 and κ >
(

n
2α + σ + 1

)
1
p − n+|γ|

2α − ρ, Lemma 2.1 and

Corollary 3.2 imply that

(3.5)

∫
H

|∂γxD
ρ+κ
t W (α)(x− y, t+ s)|ptσdV (x, t) ≤ Cs

n
2α+σ+1−(n+|γ|

2α +ρ+κ)p

for all (y, s) ∈ H. Hence by (3.4) and (3.5), we obtain

µ(Q(α)(y, τs)) ≤ Cs
n
2α+σ+1+(

|γ|
2α +ν−ρ)p

for all (y, s) ∈ H. Since s is arbitrary, we can get the inequality of (3).
(3) ⇒ (1). We assume that µ satisfies the inequality of (3). It suffices to

show that the conditions of Lemma 3.3 are satisfied. We put ε = n
2α + σ+ 1+

( |γ|2α + ν − ρ)p. Furthermore, let η and κ be real numbers which satisfy

−
(
|γ|
2α

+ ν − ρ

)
p < η < σ + 1 and κ > max

{
λ+ 1

p
, σ + 1− ρ− η(p− 1)

p

}
.

Also, we put

θ = −
(
|γ|
2α

+ ν − ρ+
η

p

)
(p− 1) .

Then, we have

θ + ε =
n

2α
+ σ + 1 +

|γ|
2α

+ ν − ρ− η(p− 1)

p
>

n

2α
+ σ + 1− η >

n

2α
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and

θ + ε =
n

2α
+ σ + 1 +

|γ|
2α

+ ν − ρ− η(p− 1)

p
<
n+ |γ|
2α

+ ν + κ.

Therefore by (1) of Lemma 2.1 and Lemma 3.1, we obtain∫
H

|∂γxDν+κ
t W (α)(x− y, t+ s)|t−(

|γ|
2α +ν−ρ+ η

p )(p−1)dµ(x, t)

≤ Cs−(ρ+κ−σ−1+
η(p−1)

p )

for all (y, s) ∈ H. Also, since − |γ|
2α − ν < η

p − ρ < κ, the conditions of Lemma

3.3 are satisfied. Therefore, we can get the inequality (3.3) of (1).
The equivalence (2) ⇔ (3) immediately follows from Lemma 2.2. Thus, this

completes the proof. □

4. Boundedness of the representing operator

In this section, we study the boundedness of the representing operator Uκ
p,X

defined in Section 1. In Theorem 4.3 below, we give the proof of Theorem 1.
First, we introduce the following operator, which is used in our argument. Let
0 < α ≤ 1, 1 ≤ p < ∞, and λ > −1. Furthermore, let γ ∈ Nn

0 , ν ∈ R, and
X = {(xj , tj)} be a sequence in H. For a function u on H, the operator T γ,ν

p,X
is defined by

T γ,ν
p,X u =

{
t
( n
2α+λ+1) 1

p+
|γ|
2α +ν

j ∂γxDν
t u(xj , tj)

}
.

The following lemma is necessary and sufficient conditions for the operator
T γ,ν
p,X to be a bounded operator from bpα(λ) to ℓ

p. For any finite set E ⊂ H, we

denote by #(E) the number of points in E.

Lemma 4.1. Let 0 < α ≤ 1, 1 ≤ p < ∞, and λ > −1. Furthermore,
let γ ∈ Nn

0 , ν > −λ+1
p , and X = {(xj , tj)} be a sequence in H. Then, the

following statements are equivalent:
(1) T γ,ν

p,X : bpα(λ) → ℓp is bounded.

(2) There exist L ∈ N and 0 < δ < 1 such that #(X∩ S(α)
δ (x, t)) ≤ L for all

(x, t) ∈ H.
(3) There exists M ∈ N such that #(X ∩Q(α)(x, t)) ≤M for all (x, t) ∈ H.
(4) For any 0 < ε < 1, there exists K ∈ N such that X = X1 ∪ · · · ∪XK and

each sequence Xi is ε-separated in the α-parabolic sense.

Proof. (1) ⇔ (2). Let u ∈ bpα(λ) and X = {Xj} = {(xj , tj)} be a sequence in

H. Also, let µ =
∑

j t
n
2α+λ+1+(

|γ|
2α +ν)p

j δXj , where δXj denotes a Dirac measure
at the point Xj . Then we have

∥T γ,ν
p,X u∥

p
ℓp =

∑
j

t
n
2α+λ+1+(

|γ|
2α +ν)p

j |∂γxDν
t u(xj , tj)|p =

∫
H

|∂γxDν
t u(x, t)|pdµ(x, t).
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Let (y, s) ∈ H be fixed. If (xj , tj) ∈ S
(α)
δ (y, s), then we have 1−δ

1+δ s < tj <
1+δ
1−δ s.

Therefore, we obtain

µ(S
(α)
δ (y, s)) =

∑
j

t
n
2α+λ+1+(

|γ|
2α +ν)p

j δXj (S
(α)
δ (y, s))

≈ s
n
2α+λ+1+(

|γ|
2α +ν)p#(X ∩ S(α)

δ (y, s)),

where A ≈ B means C−1A ≤ B ≤ CA for some C > 0. Hence the equivalence
(1) ⇔ (2) immediately follows from Theorem 3.4.

The equivalence (2) ⇔ (3) ⇔ (4) is already given in Theorem 1 of [7]. Thus,
this completes the proof. □

In order to prove the main theorem of this section, we also give the following
lemma.

Lemma 4.2. Let 0 < α ≤ 1. For every θ > −1 and c > 0, there exists a
constant C > 0 such that

sθ

(t+ s+ |x− y|2α)c
≤ CF (δ)

s
n
2α+1

∫
S

(α)
δ (y,s)

rθ

(t+ r + |x− z|2α)c
dV (z, r)

for all 0 < δ < 1 and (x, t), (y, s) ∈ H, where

F (δ) =
(1− δ2)

n
2α+θ+1−c

δ
n
2α

{
(1 + δ2)2(θ+1) − (1− δ2)2(θ+1)

} .
Proof. Let θ > −1 and c > 0. We consider the following:

sθ

(t+ s+ |x− y|2α)c

=
sθ

(t+ s+ |x− y|2α)c

∫
S

(α)
δ (y,s)

rθdV (z, r)

(∫
S

(α)
δ (y,s)

rθdV (z, r)

)−1

= sθ
∫
S

(α)
δ (y,s)

rθ

(t+ s+ |x− y|2α)c
dV (z, r)

(∫
S

(α)
δ (y,s)

rθdV (z, r)

)−1

.

We note that∫
S

(α)
δ (y,s)

rθdV (z, r)

= Bn

(
2δ

1− δ2
s

) n
2α 1

θ + 1

{(
1 + δ

1− δ
s

)θ+1

−
(
1− δ

1 + δ
s

)θ+1
}

=
2

n
2αBn

θ + 1
· δ

n
2α {(1 + δ)2(θ+1) − (1− δ)2(θ+1)}

(1− δ2)
n
2α+θ+1

s
n
2α+θ+1,
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where Bn is the volume of the unit ball in Rn. Moreover, if (z, r) ∈ S
(α)
δ (y, s),

then we have

t+ r + |x− z|2α ≤ t+ r + {|x− y|+ |y − z|}2α

≤ t+
1 + δ

1− δ
s+

{
|x− y|+

(
2δ

1− δ2
s

) 1
2α

}2α

≤ t+

(
1 + δ

1− δ
+ 22α

2δ

1− δ2

)
s+ 22α|x− y|2α

≤ 12

1− δ2
(t+ s+ |x− y|2α).

Hence, we obtain∫
S

(α)
δ (y,s)

rθ

(t+ r + |x− z|2α)c
dV (z, r)

≥ 2
n
2αBn

12c(θ + 1)
· δ

n
2α {(1 + δ)2(θ+1) − (1− δ)2(θ+1)}

(1− δ2)
n
2α+θ+1−c

· sθ

(t+ s+ |x− y|2α)c
.

This completes the proof. □

We extend the definition of the representing operator Uκ
p,X in Section 1. Let

0 < α ≤ 1, 1 ≤ p < ∞, and λ > −1. Furthermore, let β ∈ Nn
0 , κ ∈ R, and

X = {(xj , tj)} be a sequence in H. For a sequence of real numbers {ηj}, we
define a representing operator Uβ,κ

p,X by

Uβ,κ
p,X ({ηj})(x, t)

=
∑
j

ηjt
n+|β|

2α +κ−( n
2α+λ+1) 1

p

j ∂βxDκ
tW

(α)(x− xj , t+ tj), (x, t) ∈ H.

The following theorem gives necessary and sufficient conditions for the repre-

senting operator Uβ,κ
p,X to be bounded from ℓp to bpα(λ). We note that Theorem

4.3 contains the result of Theorem 1.

Theorem 4.3. Let 0 < α ≤ 1, 1 < p < ∞, and λ > −1. Furthermore, let
β ∈ Nn

0 , κ >
λ+1
p , and X = {(xj , tj)} be a sequence in H. Then, the following

statements are equivalent:

(1) Uβ,κ
p,X : ℓp → bpα(λ) is bounded.

(2) For any 0 < ε < 1, there exist K ∈ N such that X = X1 ∪ · · · ∪ XK and
each sequence Xi is ε-separated in the α-parabolic sense.

Moreover, (2) ⇒ (1) holds when p = 1.

Proof. (1) ⇒ (2). We assume that Uβ,κ
p,X is the bounded operator from ℓp

to bpα(λ). Then, there exists the adjoint operator (Uβ,κ
p,X )

∗ of Uβ,κ
p,X such that

(Uβ,κ
p,X )

∗ : (bpα(λ))
∗ → (ℓp)∗ is bounded. By Lemma 2.6, (Uβ,κ

p,X )
∗ : bqα(λ) → ℓq

is bounded, where q is the exponent conjugate to p. Let {ej} be the standard
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basis of ℓp. Furthermore, let (·, ·) be the usual pairing of ℓp and ℓq, and recall
that ⟨·, ·⟩λ is the integral pairing of bpα(λ) and bqα(λ) defined in Lemma 2.6. For
u ∈ bqα(λ), we have

((Uβ,κ
p,X )

∗u, ej)

= ⟨u,Uβ,κ
p,X (ej)⟩λ

=

∫
H

u(y, s)t
n+|β|

2α +κ−( n
2α+λ+1) 1

p

j ∂βxDκ
tW

(α)(y − xj , s+ tj)s
λdV (y, s)

= t
n+|β|

2α +κ−( n
2α+λ+1) 1

p

j

∫
H

u(y, s)∂βxDκ
tW

(α)(y − xj , s+ tj)s
λdV (y, s).

By a change of variable y = 2xj − z, we have

((Uβ,κ
p,X )

∗u, ej)

= t
n+|β|

2α +κ−( n
2α+λ+1) 1

p

j

∫
H

v(z, s)∂βxDκ
tW

(α)(xj − z, s+ tj)s
λdV (z, s),

where v(z, s) = u(2xj − z, s). Differentiating through the integral, Lemma 2.5
implies that

Cλ+1

∫
H

v(z, s)∂βxDκ
tW

(α)(xj − z, s+ tj)s
λdV (z, s)

= ∂βxD
κ−(λ+1)
t (v(xj , tj)) = (−1)|β|∂βxD

κ−(λ+1)
t u(xj , tj).

Therefore, we obtain

((Uβ,κ
p,X )

∗u, ej) =
(−1)|β|

Cλ+1
t
n+|β|

2α +κ−( n
2α+λ+1) 1

p

j ∂βxD
κ−(λ+1)
t u(xj , tj)

=
(−1)|β|

Cλ+1
t
( n
2α+λ+1) 1

q+
|β|
2α +κ−(λ+1)

j ∂βxD
κ−(λ+1)
t u(xj , tj)

= (
(−1)|β|

Cλ+1
T

β,κ−(λ+1)
q,X u, ej).

Hence we have

(Uβ,κ
p,X )

∗u =
(−1)|β|

Cλ+1
T

β,κ−(λ+1)
q,X u

for all u ∈ bqα(λ). Since (Uβ,κ
p,X )

∗ : bqα(λ) → ℓq is bounded, so is T
β,κ−(λ+1)
q,X .

Therefore by Lemma 4.1, we obtain the implication (1) ⇒ (2).
(2) ⇒ (1). We may assume that the sequence X in H is δ-separated in the

α-parabolic sense. Let {ηj} ∈ ℓp and (x, t) ∈ H. By Lemmas 2.1 and 4.2, we
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have

|Uβ,κ
p,X ({ηj})(x, t)|

≤
∑
j

|ηj |t
n+|β|

2α +κ−( n
2α+λ+1) 1

p

j |∂βxDκ
tW

(α)(x− xj , t+ tj)|(4.1)

≤ C
∑
j

|ηj |t
− n

2α−1
j

∫
S

(α)
δ (xj ,tj)

r
n+|β|

2α +κ−( n
2α+λ+1) 1

p

(t+ r + |x− z|2α)
n+|β|

2α +κ
dV (z, r)

=

∫
H

f(z, r)r
n+|β|

2α +κ−( n
2α+λ+1) 1

p

(t+ r + |x− z|2α)
n+|β|

2α +κ
dV (z, r),

where

f(z, r) = C
∑
j

|ηj |t
− n

2α−1
j χj(z, r)

and χj is the characteristic function of S
(α)
δ (xj , tj).

First, we show that Uβ,κ
p,X : ℓp → Lp(λ) is bounded when 1 < p < ∞. Let q

be the exponent conjugate to p. And we take a real number c such that

n

2α
+ 1 +

(
|β|
2α

+ κ− λ− 1

)
q

p
<
c

p
<

n

2α
+ λ+ 2 +

(
|β|
2α

+ κ− λ− 1

)
q,

(4.2)

( n
2α

+ 1
) p
q
<
c

q
<
( n
2α

+ 1
) p
q
+

|β|
2α

+ κ.(4.3)

By the Hölder inequality, we obtain

|Uβ,κ
p,X ({ηj})(x, t)|

p ≤

(∫
H

f(z, r)r
n+|β|

2α +κ−( n
2α+λ+1) 1

p r
c
pq r−

c
pq

(t+ r + |x− z|2α)
n+|β|

2α +κ
dV (z, r)

)p

(4.4)

≤ C

∫
H

f(z, r)pr
c
q

(t+ r + |x− z|2α)
n+|β|

2α +κ
dV (z, r)

×

(∫
H

r(
n+|β|

2α +κ)q−( n
2α+λ+1) q

p−
c
p

(t+ r + |x− z|2α)
n+|β|

2α +κ
dV (z, r)

) p
q

.

Since c satisfies the condition (4.2), Corollary 3.2 implies that
(4.5)(∫

H

r(
n+|β|

2α +κ)q−( n
2α+λ+1) q

p−
c
p

(t+ r + |x− z|2α)
n+|β|

2α +κ
dV (z, r)

) p
q

≤ Ct(
n
2α+1) p

q+
|β|
2α +κ−λ−1− c

q .
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Hence by (4.4), (4.5), and the Fubini theorem, we have

∥Uβ,κ
p,X ({ηj})∥

p
Lp(λ)

=

∫
H

|Uβ,κ
p,X ({ηj})(x, t)|

ptλdV (x, t)

≤ C

∫
H

∫
H

f(z, r)pr
c
q

(t+ r + |x− z|2α)
n+|β|

2α +κ
dV (z, r)t(

n
2α+1) p

q+
|β|
2α +κ−1− c

q dV (x, t)

≤ C

∫
H

f(z, r)pr
c
q

∫
H

t(
n
2α+1) p

q+
|β|
2α +κ−1− c

q

(t+ r + |x− z|2α)
n+|β|

2α +κ
dV (x, t)dV (z, r).

Since c satisfies the condition (4.3), Corollary 3.2 implies that∫
H

t(
n
2α+1) p

q+
|β|
2α +κ−1− c

q

(t+ r + |x− z|2α)
n+|β|

2α +κ
dV (x, t) ≤ Cr(

n
2α+1) p

q−
c
q = Cr(

n
2α+1)(p−1)− c

q .

Therefore, we obtain

∥Uβ,κ
p,X ({ηj})∥

p
Lp(λ) ≤ C

∫
H

f(z, r)pr(
n
2α+1)(p−1)dV (z, r).

Since f(z, r)p ≤
∑

j |ηj |pt
−( n

2α+1)p
j χj(z, r), we have∫

H

f(z, r)pr(
n
2α+1)(p−1)dV (z, r)

≤ C
∑
j

|ηj |pt
−( n

2α+1)p
j

∫
S

(α)
δ (xj ,tj)

r(
n
2α+1)(p−1)dV (z, r)

≤ C
∑
j

|ηj |pt
− n

2α−1
j V (S

(α)
δ (xj , tj))

≤ C
∑
j

|ηj |p.

Thus, Uβ,κ
p,X : ℓp → Lp(λ) is bounded when 1 < p <∞.

Next, we show that Uβ,κ
1,X : ℓ1 → L1(λ) is bounded. By (4.1) and the Fubini

theorem, we have

∥Uβ,κ
1,X ({ηj})∥L1(λ)

≤ C

∫
H

∫
H

f(z, r)r
|β|
2α +κ−λ−1

(t+ r + |x− z|2α)
n+|β|

2α +κ
dV (z, r)tλdV (x, t)

= C

∫
H

f(z, r)r
|β|
2α +κ−λ−1

∫
H

tλ

(t+ r + |x− z|2α)
n+|β|

2α +κ
dV (x, t)dV (z, r).
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Corollary 3.2 implies that∫
H

tλ

(t+ r + |x− z|2α)
n+|β|

2α +κ
dV (x, t) ≤ Cr−(

|β|
2α +κ−λ−1).

Since f(z, r) =
∑

j |ηj |t
− n

2α−1
j χj(z, r), we obtain

∥Uβ,κ
1,X ({ηj})∥L1(λ) ≤ C

∫
H

f(z, r)dV (z, r)

= C
∑
j

|ηj |t
− n

2α−1
j V (S

(α)
δ (xj , tj)) ≤ C

∑
j

|ηj |.

Thus, Uβ,κ
1,X : ℓ1 → L1(λ) is bounded.

Finally, we show that Uβ,κ
p,X ({ηj}) is L(α)-harmonic on H. For 0 < t1 < t2 <

∞, the boundedness of Uβ,κ
p,X implies that Uβ,κ

p,X ({ηj}) satisfies the integrability

condition (2.2) for all {ηj} ∈ ℓp. Moreover, the norm convergence of Uβ,κ
p,X ({ηj})

implies that Uβ,κ
p,X ({ηj}) converges uniformly on Rn × [τ,∞) for every τ > 0.

Therefore by (3) of Lemma 2.1, Uβ,κ
p,X ({ηj}) is L(α)-harmonic on H. Thus, we

can get the statement (1) when 1 ≤ p <∞. This completes the proof. □

5. Representing sequences on parabolic Bergman spaces

In this section, we study representing sequences on bpα(λ). In Theorem 5.3
below, we give the proof of Theorem 2. First, we present the following lemma,
which is used in the proof of Lemma 5.2 below.

Lemma 5.1 (Lemma 3.1 of [6]). Let 0 < α ≤ 1 and σ > 0. Suppose 0 < δ ≤
1/3. Then, there exists a constant C = C(α, σ) > 0 independent of δ with the

following property: For every a > 0, s > 0, and ξ, t > 0 with ξ <
(

2δ
1−δ2

) 1
2α

t,

we have ∫ 1

0

ξ

(t+ s+ |a− ξτ |)σ+1
dτ ≤ C

δ
1
2α

(t+ s+ a)σ
.

The following lemma is useful for the proof of Theorem 5.3.

Lemma 5.2. Let 0 < α ≤ 1, β ∈ Nn
0 , κ > − n

2α , and θ be a real number. Then,
there exists a constant C = C(n, α, β, κ, θ) > 0 such that for all (x, t), (y, s) ∈
H, (z, r) ∈ S

(α)
δ (y, s), and 0 < δ ≤ 1/3,

(5.1)

|sθ∂βxDκ
tW

(α)(x−y, t+s)−rθ∂βxDκ
tW

(α)(x−z, t+r)| ≤ C(δ + δ
1
2α )rθ

(t+ r + |x− z|2α)
n+|β|

2α +κ
.
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Proof. We have

|sθ∂βxDκ
tW

(α)(x− y, t+ s)− rθ∂βxDκ
tW

(α)(x− z, t+ r)|

≤ |sθ∂βxDκ
tW

(α)(x− y, t+ s)− sθ∂βxDκ
tW

(α)(x− z, t+ s)|

+ |sθ∂βxDκ
tW

(α)(x− z, t+ s)− rθ∂βxDκ
tW

(α)(x− z, t+ r)|.

Hence it suffices to show that there exists a constant C > 0 independent of δ
with the following inequalities
(5.2)

sθ|∂βxDκ
tW

(α)(x− y, t+ s)−∂βxDκ
tW

(α)(x− z, t+ s)| ≤ Cδ
1
2α rθ

(t+ r + |x− z|2α)
n+|β|

2α +κ

and
(5.3)

|sθ∂βxDκ
tW

(α)(x−z, t+s)−rθ∂βxDκ
tW

(α)(x−z, t+r)| ≤ Cδrθ

(t+ r + |x− z|2α)
n+|β|

2α +κ
.

We show the inequality (5.2). Since 1−δ
1+δ s < r < 1+δ

1−δ s and 0 < δ ≤ 1/3,

there exists a constant C > 0 independent of δ such that C−1rθ ≤ sθ ≤ Crθ.
Furthermore, we have

|∂βxDκ
tW

(α)(x− y, t+ s)− ∂βxDκ
tW

(α)(x− z, t+ s)|

≤
∣∣∣∣∫ 1

0

(z − y) · ∇x∂
β
xDκ

tW
(α)(τ(z − y)− (z − x), t+ s)dτ

∣∣∣∣
≤
∫ 1

0

|z − y| · |∇x∂
β
xDκ

tW
(α)(τ(z − y)− (z − x), t+ s)|dτ.

Lemmas 2.1 and 5.1 imply that∫ 1

0

|z − y| · |∇x∂
β
xDκ

tW
(α)(τ(z − y)− (z − x), t+ s)|dτ

≤ C

∫ 1

0

|z − y|
(t+ s+ |τ(z − y)− (z − x)|2α)

n+|β|+1
2α +κ

dτ

≤ C

∫ 1

0

|z − y|
(t

1
2α + s

1
2α +

∣∣|z − x| − τ |z − y|
∣∣)n+|β|+1+2ακ

dτ

≤ Cδ
1
2α

(t
1
2α + s

1
2α + |x− z|)n+|β|+2ακ

≤ Cδ
1
2α

(t+ s+ |x− z|2α)
n+|β|

2α +κ
.

Since 1−δ
1+δ r < s < 1+δ

1−δ r and 0 < δ ≤ 1/3, we obtain the inequality (5.2).



1036 YÔSUKE HISHIKAWA

We show the inequality (5.3). Let θ ̸= 0. Then, Lemma 2.1 implies that∣∣∣sθ∂βxDκ
tW

(α)(x− z, t+ s)− rθ∂βxDκ
tW

(α)(x− z, t+ r)
∣∣∣

=

∣∣∣∣∫ s

r

d

dτ

(
τθ∂βxDκ

tW
(α)(x− z, t+ τ)

)
dτ

∣∣∣∣
≤ |θ|

∣∣∣∣∫ s

r

τθ−1∂βxDκ
tW

(α)(x− z, t+ τ)dτ

∣∣∣∣+ ∣∣∣∣∫ s

r

τθ∂βxDκ+1
t W (α)(x− z, t+ τ)dτ

∣∣∣∣
≤ C

{∣∣∣∣∣
∫ s

r

τθ−1

(t+ τ + |x− z|2α)
n+|β|

2α +κ
dτ

∣∣∣∣∣+
∣∣∣∣∣
∫ s

r

τθ

(t+ τ + |x− z|2α)
n+|β|

2α +κ+1
dτ

∣∣∣∣∣
}

≤ C

∣∣∣∣∣
∫ s

r

τθ−1

(t+ τ + |x− z|2α)
n+|β|

2α +κ
dτ

∣∣∣∣∣ .
Since 1−δ

1+δ r < s < 1+δ
1−δ r and 0 < δ ≤ 1/3, there exists a constant C > 0

independent of δ such that∣∣∣∣∣
∫ s

r

τθ−1

(t+ τ + |x− z|2α)
n+|β|

2α +κ
dτ

∣∣∣∣∣ ≤ Crθ−1|s− r|
(t+ r + |x− z|2α)

n+|β|
2α +κ

≤ Cδrθ

(t+ r + |x− z|2α)
n+|β|

2α +κ
.

Hence, we obtain the inequality (5.3). When θ = 0, we can also show the
inequality (5.3), easily. Thus, we obtain the inequality (5.1). □

Now, we show the main theorem in this section. Let 0 < δ ≤ 1/3. And
suppose that {(xj , tj)} is a δ-lattice in the α-parabolic sense, that is, H =

∪jS
(α)
δ (xj , tj) and there exists 0 < ε < δ such that {(xj , tj)} is ε-separated in

the α-parabolic sense. Then, we take a pairwise disjoint covering {Sj} of H as
follows:

S1 = S
(α)
δ (x1, t1) \

∪
k≥2

S(α)
ε (xk, tk),(5.4)

S2 = S
(α)
δ (x2, t2) \

S1 ∪

∪
k≥3

S(α)
ε (xk, tk)

 ,

· · · ,

Sj = S
(α)
δ (xj , tj) \


 ∪

ℓ≤j−1

Sℓ

 ∪

 ∪
k≥j+1

S(α)
ε (xk, tk)

 .

It is easy to see that S
(α)
ε (xj , tj) ⊂ Sj ⊂ S

(α)
δ (xj , tj) ⊆ S

(α)
1/3(xj , tj) and there

exists a constant C > 0 independent of δ with V (Sj) ≤ Ct
n
2α+1
j for all j ≥ 1.

We show our bpα(λ)-representation theorem.
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Theorem 5.3. Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and κ > λ+1
p be a real

number. Then, there exists 0 < δ0 ≤ 1/3 such that if a sequence X in H is a δ-
lattice in the α-parabolic sense with 0 < δ ≤ δ0, then X is a bpα(λ)-representing
sequence of order κ.

Proof. Let X = {(xj , tj)} be a δ-lattice in the α-parabolic sense with 0 < δ ≤
1/3. Here, constraints of δ will be imposed later. Since X is ε-separated in the
α-parabolic sense for some ε > 0, Theorem 4.3 implies that Uκ

p,X : ℓp → bpα(λ)

is bounded. Let {Sj} be a pairwise disjoint covering of H defined in (5.4). We
define the operator Bp,X on bpα(λ) by

Bp,Xu :=

{
t
( n

2α+λ+1) 1
p−(

n
2α+1)

j u(xj , tj)V (Sj)

}
.

Since V (Sj) ≤ Ct
n
2α+1
j for all j ≥ 1 and X is ε-separated in the α-parabolic

sense for some ε > 0, Lemma 4.1 implies that Bp,X : bpα(λ) → ℓp is bounded.
We also define the operator Aκ

p,X by

Aκ
p,Xu(x, t) = CκU

κ
p,X ◦Bp,X(5.5)

= Cκ

∑
j

tκ−1
j u(xj , tj)Dκ

tW
(α)(x− xj , t+ tj)V (Sj),

where Cκ is the constant defined in Theorem A. Then, Aκ
p,X : bpα(λ) → bpα(λ) is

bounded. We show that ∥I − Aκ
p,X∥ < 1 for all δ sufficiently small, where I is

the identity operator on bpα(λ) and ∥ · ∥ is the operator norm. In fact, Lemma
2.5 implies that for u ∈ bpα(λ) and (x, t) ∈ H,

(5.6) u(x, t) = Cκ

∫
H

u(y, s)Dκ
tW

(α)(x− y, t+ s)sκ−1dV (y, s).

Since {Sj} is the pairwise disjoint covering of H, we obtain

(5.7) u(x, t) = Cκ

∑
j

∫
Sj

u(y, s)Dκ
tW

(α)(x− y, t+ s)sκ−1dV (y, s).

Hence by (5.7) and (5.5), we have (I − Aκ
p,X)u(x, t) = Cκ(Π1(x, t) + Π2(x, t)),

where

Π1(x, t) =
∑
j

∫
Sj

u(y, s)(sκ−1Dκ
tW

(α)(x− y, t+ s)

− tκ−1
j Dκ

tW
(α)(x− xj , t+ tj))dV (y, s)

and

Π2(x, t) =
∑
j

∫
Sj

(u(y, s)− u(xj , tj))t
κ−1
j Dκ

tW
(α)(x− xj , t+ tj)dV (y, s).
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We estimate the function Π1. Since Sj ⊂ S
(α)
δ (xj , tj), Lemma 5.2 and the

definition of {Sj} imply that

|Π1(x, t)| ≤
∑
j

∫
Sj

|u(y, s)|

× |sκ−1Dκ
tW

(α)(x− y, t+ s)− tκ−1
j Dκ

tW
(α)(x− xj , t+ tj)|dV (y, s)

≤ C(δ + δ
1
2α )
∑
j

∫
Sj

|u(y, s)|sκ−1

(t+ s+ |x− y|2α) n
2α+κ

dV (y, s)

= C(δ + δ
1
2α )

∫
H

|u(y, s)|sκ−1

(t+ s+ |x− y|2α) n
2α+κ

dV (y, s)

= C(δ + δ
1
2α )Ψκ,κ−1

α u(x, t),

where Ψκ,κ−1
α is the operator defined in Section 2. Therefore by Lemma 2.7,

there exists a constant C > 0 independent of δ such that

∥Π1∥Lp(λ) ≤ C(δ + δ
1
2α )∥Ψκ,κ−1

α u∥Lp(λ) ≤ C(δ + δ
1
2α )∥u∥Lp(λ).

We estimate the function Π2. Lemma 2.1 implies that

|Π2(x, t)| =
∑
j

∫
Sj

|u(y, s)− u(xj , tj)|tκ−1
j |Dκ

tW
(α)(x− xj , t+ tj)|dV (y, s)

≤ C
∑
j

∫
Sj

|u(y, s)− u(xj , tj)|tκ−1
j

(t+ tj + |x− xj |2α)
n
2α+κ

dV (y, s).

Since Sj ⊂ S
(α)
δ (xj , tj) ⊆ S

(α)
1/3(xj , tj), there exists a constant C > 0 indepen-

dent of δ such that

(5.8) C−1tj < s < Ctj and t+ s+ |x− y|2α ≤ C(t+ tj + |x− xj |2α)

for all (y, s) ∈ Sj . Furthermore by (5.6) and Lemma 5.2, there exists a constant
C > 0 independent of δ such that

|u(y, s)− u(xj , tj)|(5.9)

≤ C

∫
H

|u(z, r)|

× |Dλ+2
t W (α)(y − z, s+ r)−Dλ+2

t W (α)(xj − z, tj + r)|rλ+1dV (z, r)

≤ C(δ + δ
1
2α )

∫
H

|u(z, r)|rλ+1

(s+ r + |y − z|2α) n
2α+λ+2

dV (z, r)
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for all (y, s) ∈ Sj . Hence, (5.8) and (5.9) imply that

|Π2(x, t)| ≤ C(δ + δ
1
2α )
∑
j

∫
Sj

∫
H

|u(z, r)|rλ+1

(s+ r + |y − x|2α) n
2α+λ+2

dV (z, r)

× sκ−1

(t+ s+ |x− y|2α) n
2α+κ

dV (y, s)

≤ C(δ + δ
1
2α )

∫
H

∫
H

|u(z, r)|rλ+1

(s+ r + |y − x|2α) n
2α+λ+2

dV (z, r)

× sκ−1

(t+ s+ |x− y|2α) n
2α+κ

dV (y, s)

≤ C(δ + δ
1
2α )Ψκ,κ−1

α (Ψλ+2,λ+1
α u)(x, t).

Therefore by Lemma 2.7, we obtain

∥Π2∥Lp(λ) ≤ C(δ + δ
1
2α )∥Ψκ,κ−1

α (Ψλ+2,λ+1
α u)∥Lp(λ)

≤ C(δ + δ
1
2α )∥Ψλ+2,λ+1

α u∥Lp(λ) ≤ C(δ + δ
1
2α )∥u∥Lp(λ).

Hence, there exists 0 < δ0 ≤ 1/3 such that ∥I − Aκ
p,X∥ < 1 for all 0 < δ ≤ δ0.

This completes the proof. □

6. bpα(λ)-sampling sequences with fractional derivatives

In this section, we introduce bpα(λ)-sampling sequences, and we show that
bpα(λ)-representing sequences are closely related to bpα(λ)-sampling sequences.
We give the definition of bpα(λ)-sampling sequences. Let 0 < α ≤ 1, 1 ≤ p <∞,
λ > −1, ν ∈ R, and X = {(xj , tj)} be a sequence in H. We say that X is a
bpα(λ)-sampling sequence of order ν if there exists a constant C > 0 such that

C−1∥u∥pLp(λ) ≤
∑
j

t
n
2α+λ+1+νp
j |Dν

t u(xj , tj)|p ≤ C∥u∥pLp(λ)

for all u ∈ bpα(λ). In other words, X is a bpα(λ)-sampling sequence if the operator

T ν
p,X : bpα(λ) → ℓp is bounded and bounded below, where T ν

p,X = T 0,ν
p,X is defined

in Section 4. In order to show the main theorem of this section, we present the
following lemma, which is already given in the proof of Theorem 4.3.

Lemma 6.1. Let 0 < α ≤ 1, 1 < p <∞, λ > −1, and κ > λ+1
p . Furthermore,

let X be a sequence in H, and q the exponent conjugate to p. If Uκ
p,X : ℓp →

bpα(λ) is bounded, then

(Uκ
p,X)

∗u =
1

Cλ+1
T

κ−(λ+1)
q,X u

for all u ∈ bqα(λ).

We also need the following lemma, which is given in [10].
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Lemma 6.2 (Theorem 4.13 of [10]). Let X and Y be Banach spaces. Fur-
thermore, let T be a bounded operator from X into Y . Then, the following
statements are equivalent:

(1) T (X) = Y .
(2) There exists a constant C > 0 such that ∥T ∗y∗∥ ≥ C∥y∗∥ for all y∗ ∈ Y ∗.

Now, we show the main theorem of this section.

Theorem 6.3. Let 0 < α ≤ 1, 1 < p < ∞, λ > −1, and κ > λ+1
p . Further-

more, let X be a sequence in H, and q the exponent conjugate to p. Then, the
following conditions are equivalent:

(1) X is a bpα(λ)-representing sequence of order κ.
(2) X is a bqα(λ)-sampling sequence of order κ− (λ+ 1).

Proof. (1) ⇒ (2). We assume that X is a bpα(λ)-representing sequence of order
κ, that is, Uκ

p,X : ℓp → bpα(λ) is bounded and Uκ
p,X(ℓ

p) = bpα(λ). Then, Lemmas
2.6, 6.1, and 6.2 imply that

∥Tκ−(λ+1)
q,X u∥ℓq = C∥(Uκ

p,X)
∗u∥ℓq ≥ C∥u∥Lq(λ)

for all u ∈ bqα(λ). Therefore, T
κ−(λ+1)
q,X : bqα(λ) → ℓq is bounded below. More-

over, by Lemma 4.1 and Theorem 4.3, T ν
q,X : bqα(λ) → ℓq is bounded for each

ν > −λ+1
q . Hence, X is a bqα(λ)-sampling sequence of order κ− (λ+ 1).

(2) ⇒ (1). We assume that X is a bqα(λ)-sampling sequence of order κ −
(λ+ 1), that is, T

κ−(λ+1)
q,X : bqα(λ) → ℓq is bounded and bounded below. Then,

by Lemma 4.1 and Theorem 4.3, Uκ
p,X : ℓp → bpα(λ) is bounded. Therefore,

Lemma 6.1 implies that

∥(Uκ
p,X)

∗u∥ℓq = C∥Tκ−(λ+1)
q,X u∥ℓq ≥ C∥u∥Lq(λ)

for all u ∈ bqα(λ). Hence, by Lemmas 2.6 and 6.2, we obtain Uκ
p,X(ℓ

p) = bpα(λ).

Thus, X is a bpα(λ)-representing sequence of order κ. □
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