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REPRESENTING SEQUENCES ON
PARABOLIC BERGMAN SPACES

Y OSUKE HISHIKAWA

ABSTRACT. The parabolic Bergman space is the set of LP()\)-solutions
of the parabolic operator L(®). In this paper, we study representing
sequences on parabolic Bergman spaces. We establish a discrete version of
the reproducing formula on parabolic Bergman spaces by using fractional
derivatives of the fundamental solution of the parabolic operator.

1. Introduction

Let H be the upper half-space of the (n + 1)-dimensional Euclidean space
Rt (n > 1), that is, H = {(x,t) € R"";2 € R", ¢ > 0}. For 0 < a < 1, the
parabolic operator L(® is defined by

L) =0, + (—Ag)",

where 9; = 9/0t and A, is the Laplacian with respect to . Let C(H) be
the set of all real-valued continuous functions on H. For a positive integer k,
C*(H) denotes the set of all k times continuously differentiable functions on
H, and put C®(H) = N,C*(H). Furthermore, let C>°(H) be the set of all
functions in C°°(H) with compact support. A function u € C(H) is said to be
L{®)-harmonic if L(®)u = 0 in the sense of distributions (for details, see Section
2). For 1 < p < oo and A > —1, LP()) is the set of all Lebesgue measurable
functions f on H which satisfy

1l = ( / If(%t)l”tAdV(m))p < oo,

where dV is the Lebesgue volume measure on H. The parabolic Bergman space
b? ()) is the set of all L(®)-harmonic functions « on H which belong to LP(\).
We remark that b, ()) is a Banach space with the norm || - [|1»(x), and b’f/Q()\)
coincides with the harmonic Bergman space of Ramey and Yi [9]. Also, we
note that b2 (\) = {0} when A < —1 (see Proposition 4.3 of [4]).
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Our aim of this paper is the study of representing sequences on parabolic
Bergman spaces. In [3], we established the reproducing formula on parabolic
Bergman spaces by using fractional derivatives of the fundamental solution
of the parabolic operator L(®). The reproducing formula of [3] is given by
the integral of parabolic Bergman functions (see Theorem A below). In this
paper, we study a discrete version of the reproducing formula, which is given
by representing sequences.

We give some notations. For a real number k, let Df = (—0;)" be the frac-
tional differential operator, and W(®) the fundamental solution of the parabolic
operator L(® (for the explicit definitions of Dff and W(®) | see Section 2). In
[3], the following reproducing formula on b% ()\) is given.

Theorem A (Theorem 4.7 of [3]). Let 0 < a < 1,1 <p < oo, and A > —1.
And let k > % be a real number. Then the reproducing formula

(1.1) u(z,t) = Cy / u(z, )DEW ) (z —y,t + s)t""1dV (y, s)
H

holds for all uw € b2 (X\) and (x,t) € H, where C,, = 2"/T'(k) and T'(-) is
the gamma function. Moreover, the reproducing formula (1.1) also holds when
p=1and k =X+ 1.

To state our main results, we give some definitions. Let 0 < a < 1, 1 <
p <00, A > —1, and k be a real number. Furthermore, let X = {(z;,t;)} be a
sequence in H. For a sequence of real numbers {n;}, we define a representing
operator Ujx by
(1.2)

= ({n;}) th“ G D @ (@ — a5t +1,), (2t) € H.

By using the representing operator Uy, we define a representing sequence on
be(N).

Definition 1. Let 0 < o < 1,1 < p < o0, A > —1, and k be a real number.
A sequence X = {(z;,t;)} in H is called the bf ()\)-representing sequence of
order  if Uy : €7 — bl (\) is bounded and onto. Explicitly, a sequence X
is called the bp P (M)-representing sequence of order x if the following conditions
are satisfied.

(1) For {n;} € £7, the function U}« ({n;}) belongs to b}, (\), and there exists
a constant C' > 0 such that HU;X({UJ})HU()\ < C|{n;}Hler for all {n;} € ¢r.

(2) For u € bf,()), there exists {n;} € (¥ such that u = Uyx({n;}) on H.

For 0 < 6 <1 and (z,t) € H, an a-parabolic cylinder Séa) is defined by

1/2a
() . _ 26 1-6 1+(5
5. >—{<y7s>eH,|y d<(1250) pars< ol
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A sequence {(z;,t;)} in H is said to be d-separated in the a-parabolic sense
if 550‘) (xj,t;) N S(sa) (@i t;) = 0 for j # 4. Furthermore, a sequence {(z;,t;)}
in H is said to be a d-lattice in the a-parabolic sense if {(x;,t;)} satisfies the
following;

(1) Uy 85" (. 1;) = H.

(ii) For some 0 < € < 6, {(z;,t;)} is e-separated in the a-parabolic sense.

The following theorems are the main results of this paper.

Theorem 1. Let 0 < aa <1, 1 <p < oo, A > —1, and k > % be a real
number. Furthermore, let X = {(x;,t;)} be a sequence in H. Then, Ufx
satisfies the condition (1) of Definition 1 if and only if for any 0 < § < 1, there
exists K € N such that X =X, U---UXg and each sequence X; is d-separated
in the a-parabolic sense. The “if” part also holds when p = 1.

Theorem 2. Let 0 < aa < 1,1 <p<oo, A > —1, and k > % be a real
number. Then, there exists 0 < dg < 1 such that if a sequence X in H is a §-
lattice in the a-parabolic sense with 0 < & < &g, then X is a bl (\)-representing
sequence of order k.

By Theorem 2 and the open mapping theorem, we obtain the following
corollary.

Corollary 1. Let 0 < a < 1,1 < p < 00, A > —1, and Kk > % be a
real number. Then, there exists a sequence X = {(x;,t;)} in H such that the
following properties hold:

(1) For {n;} € £?, the function u = Ux({n;}) belongs to b} (\), and there
exists a constant C > 0 such that

llullze(ny < Cl{m;}ler

for all {n;} € (7.
(2) For u € bj(X), there exists {n;} € (P such that u = Ufx({n;}) on H.
Moreover, there exists a constant C' > 0 independent of u such that

{mi Hler < CllullLey-

This paper is constructed as follows. In Section 2, we present basic properties
of parabolic Bergman functions. In Section 3, we study Carleson inequalities on
parabolic Bergman spaces with fractional derivatives. The results of Carleson
inequalities shall be used for the proof of Theorem 1. In Section 4, we give the
proof of Theorem 1. In Section 5, we give our representation theorem, that
is, we show Theorem 2. In Section 6, we give the definition of bf, (\)-sampling
sequences, and we show that b ()\)-representing sequences are closely related
to bP (A)-sampling sequences.

Throughout this paper, we will denote by C' a positive constant whose value
may not necessarily be the same at each occurrence.
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2. Preliminaries

In this section, we present preliminary results. We recall the definition of

L(®)-harmonic functions. We describe the operator (—A,)®. Since the case

a =1 is trivial, we only describe the case 0 < o < 1. For 0 < oo < 1, (—A,)”
is the convolution operator defined by

(2.1) (=Ap)%Y(x,t) = —Cpo lim ((y, t) — (z, )|y — x|~ 2dy

6—01 ly—z|>6

forallyy € C°(H) and (z,t) € H, where ¢,, o = —4%7~"/?T((n+2a)/2)/T(—a)
> 0. A function u € C(H) is said to be L(®)-harmonic on H if u satisfies the
following condition: for every ¢ € C°(H),

/|u-z(“)w\dV<oo and / w- LypdV =0,
H H

where L(® = —8; + (=A,)* is the adjoint operator of L(®). By (2.1) and
the compactness of supp(¢)) (the support of 9), there exist 0 < t; < to <
0o and a constant C' > 0 such that supp(L(®¢) € § = R™ x [t1,t,] and
L@z, t)] < C(1 + |z))~""2* for all (z,t) € S. Thus, the integrability
condition [, |u~i(a)¢|dV < o0 is equivalent to the following: for any 0 < ¢; <
to < 00,

(2.2) /t i /n lu(z, t)|(1 + |2|)~"2*dV (z,t) < occ.

We introduce the fundamental solution of L(®). For 2 € R™, the fundamental
solution W (@ of L(®) is defined by

1
o /R exp(—HEP VT ) d, 10
0, t<0,

W (1) =

where z - ¢ denotes the inner product on R™. It is known that W(®) is L(®)-
harmonic on H and W(®) € C*®(H).

We present definitions of fractional integral and differential operators. Let
C(R4) be the set of all continuous functions on R} = (0,00). For a positive
real number k, let FC~" be the set of all functions ¢ € C'(R4) such that there
exists a constant € > 0 with ¢(t) = O(t7"¢) as t — oo. We remark that
FCV Cc FC"if0 < k <wv. For p € FC™", we can define the fractional
integral of ¢ with order x by

1 [ee)
)/ ot +1)dr, tE€Ry.
0

(2.3) Dy p(t) = T(s)

Furthermore, let FC" be the set of all functions ¢ € C(R.) such that (’“)[K]cp €
FC~URI=R)  where [k] is the smallest integer greater than or equal to x. In
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particular, we will write 7C* = C(R,). For ¢ € FC*, we can also define the
fractional derivative of ¢ with order x by

(2.4) Dip(t) = D; 17 (-0 (), t e R..

Also, we define DY = . We may often call both (2.3) and (2.4) the fractional
derivative of ¢ with order k. Moreover, we call Dy the fractional differential
operator with order k.

We describe basic properties of fractional derivatives of the fundamental
solution W (), which are given in [3]. Let Ny = NU{0}. For a multi-index

B=(B1,...,Bn) €N let 3% = 0181 )9z, %1 - - - Oz, Pr | where |B] = B+ - -+ Bn.
The following lemma is given by Theorem 3.1 of [3].

Lemma 2.1 (Theorem 3.1 of [3]). Let0 <a <1, B € Nj, and k > —3= be a
real number. Then, the following statements hold.
(1) The derivatives 2DEW (@) and DEOPW ) are well-defined, and

APDEW D (2, t) = DFOSW @ (&, 1)

for all (z,t) € H. Moreover, there ezists a constant C > 0 such that

LETTR

108DEW () (2, 1) < C(t + |2|>*)~
for all (z,t) € H.
(2) Let v be a real number such that k +v > —5=. Then,
DrOPDEW N (1) = OPDEH W) (2, 1)
for all (z,t) € H.
(3) BDEW (@) s L) -harmonic on H.

We also note that 92DFW () (—z,t) = (—1)IP1a8DFEW (@) (z,t) by the defi-
nition of W (),
For (z,t) € H, the a-parabolic Carleson box Q(®) is defined by

Q) (1) = {(ys) € Hily; —a; <2712 (1< j <m)t < s <2t

Clearly, we have V(Q(®)(z,t)) = Ctza+! for all (2,t) € H. The a-parabolic
Carleson boxes are used in the study of Carleson inequalities on b% () in Section
3. The following lemma shows that Q(® is nearly Séa).

Lemma 2.2 (Lemma 3.2 of [7]). For any0 < ¢ < 1, there exist positive integers
My, My and constants Cq,Co > 0 with the following properties:

(1) For each (y,s) € H, there exist points {(y;,s;)} C H (j =1,2,..., M)
such that

Q) (y,s US (y;, ;) and s < s; < Cys.
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(2) For each (y,s) € H, there exist points {(y;,s;)} C H (j =1,2,..., M)
such that

Mo
o 1
Sg )(y,s) C l | Q(“)(yj7sj) and o s <55 < Css.

=1 2

In [3], we also give the lower estimate of fractional derivatives of W(®) on
Q.

Lemma 2.3 (Proposition 3.2 of [3]). Let 0 <a <1, 3 € Nf, and k > —5= be
a real number. If each 3; is even, then there exist constants p, C > 0 such that

n+|B8| ntlBl

C7ls 2 "< |PDEW (2 —y,t+5)| < Cs™ 2a F
for all (z,t) € Q) (y, ps), where p and C depend on n,a, f and k.

We describe basic properties of fractional derivatives of parabolic Bergman
functions.

Lemma 2.4 (Proposition 4.1 of [3]). Let 0 < a < 1,1 <p < oo, A > —1,
B eNg, and K > — (& + X+ 1)% be a real number. If u € bP(N), then the
following statements hold:
(1) The derivatives 0°Dfu and DEOPu are well-defined, and
OPDru(x,t) = DEOPu(x,t)
for all (z,t) € H. Moreover, there exists a constant C > 0 such that
05D (e, )] < Ct~ 3 ~rGERFIL |
for all (z,t) € H.

2) Let v be a real number such that kK +v > — (2= + X+ 1)=. Then,
2ce

1
p
DY P Dru(x,t) = 0PDE T u(x, t)
for all (z,t) € H.
(3) 8Dfu is L) -harmonic on H.
In [3], the following reproducing formula on parabolic Bergman spaces is
given, which is the generalization of Theorem A.

Lemma 2.5 (Theorem 5.2 of [3]). Let 0 < a < 1,1 < p < oo, and A > —1.
Also, let v > —% and k > % be real numbers. Then, the reproducing
formula

(2.5) u(z,t) = CV+H/ DYuly, s)DEW ) (z — y,t + 5)s" T 1dV (y, 5)
H

holds for allu € bY(N\) and (x,t) € H. Moreover, the reproducing formula (2.5)
also holds when p =1 and Kk = XA+ 1.

We need the following duality theorem on parabolic Bergman spaces, which
is used in Section 4.
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Lemma 2.6 ((2) of Corollary 3.2 of [4]). Let 0 < « < 1, 1 < p < o0, and
A > —1. And let g be the exponent conjugate to p. Then, (b2 (A))* ~ b (\)
under the integral pairing

(u,v) = /Hu(x,t)v(x,t)t)‘d‘/(x,t), u e bb(N), vebl(N).

For k,0,0 € R and f € LP(0), let

50

PE—S _y‘Qa)%+NdV(y,s), (x,t) € H.

50 F(x,t) = s
v f(a, 1) /Hlf(% I;

In the proof of (1) of Theorem 3.1 of [4], the authors show the following result,
which is used in our argument.

Lemma 2.7 (Theorem 3.1 of [4]). Let 0 < o < 1,1 < p < o0, and o € R.
Suppose that k,0 € R with k > —g= satisfy

c—Op<p—1<kp+o—06p.
Then, there exists a constant C' > 0 such that

I fll Loy < CNF e o)
for all f € L?(0), wheren=(k—0 —1)p+o.

3. Carleson inequalities with fractional derivatives

Let v € Nj and v,p,0 € R. We say that a positive Borel measure p on
H satisfies a Carleson inequality on b% (\) with fractional derivatives if there
exists a constant C' > 0 such that

/ |0 Dy u(x, t)|Pdu(z, t) SC/ |DYu(x, t)|Pt7dV (x,t)
H H

for all u € b%(A). In this section, we study the Carleson inequalities on bf (\)
with fractional derivatives. A result obtained by the study of the Carleson
inequalities on b% (\) should be used for the proof of Theorem 1. First, we
show the following lemma, which is an important tool for the proof of the main
theorem in this section.

Lemma 3.1. Let 0 < a < 1 and 6,¢c € R. If there exist constants e, M > 0
such that
n
20
for all (x,t) € H, then there exists a constant C' > 0 such that

<O+4¢e<c, and p(QY (x,t)) < Mt°

[
S
du(y, s) < CtVtec
/H<t+s+|x—y\2a)c Hl,o) <

for all (z,t) € H.
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Proof. Let (x,t) € H be fixed. For a multi-index v = (y1,...,7v,) € Z™ and
m € Z, we define Qb

Qym =1 (y,8) € H;v;(2Mt)2e <25 —y; < (5 +1)(2Mt)2 (1 < j <n),
27t < s < 2mH}

Then, {Q~,m} is a set of a-parabolic Carleson boxes, and H = UQ.,,,. More-
over, since pu(Q@(z,t)) < Mt°, we have ;u(Q.,.n) < M(2™t)°. Hence, we

obtain
0
S
du(y, s
L syt
/ o (45)
= du(y, s
UQ. . (E+ 8+ |z —y[2¥)e
Sy [ o
= du(y, s)
_ 2a\ ¢ ?
i Sy, (st |z —y*)
(2mt>0
SO e o i (@)
S S G 2m 27 (0] + -+ 92))

<onY Y g
m m 2 .. 2\ \c
MEZ"/EZ” t+2mt+2 t<71 + + ’Yn> )

1
= CMf+e—ec § gm(0+e—c) § > .
—m . 2\a\c
et i 2 m+ 14 (vi+ +72))

By elementary calculations, we have
1

gzjn @41+ 0+ +72))°

1
<C d
<0, T

[e%e] 77%@_1
<CE™™+ 1)%—0/ dn < C(27™ 4 1)2a ¢,
o Ll+n

Since 27™ +1>1 (m >0) and 27" +1 > 2"™ (m < 0), we obtain

0
S
ap(y,
/H<t+s+|x—y|2a>c uly: %)

< opree ] Y gnoree) L 37 gmre- )

m>0 m<0
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n
Because o < 0+ ¢ < ¢, we conclude
@

0
S
du(y, s) < Ctfte—c.
/H<t+s+|x—y|2a>c wly,s) <

Thus, this completes the proof. ([
If 1 is the Lebesgue volume measure V on H, then there exists a constant

M > 0 such that u(Q®(x,t)) = Mt3a+! for all (z,t) € H. Therefore by
Lemma 3.1, we have the following corollary.

Corollary 3.2. Let 0 < o <1 and 0 > —1. If a constant ¢ > 0 satisfies the
condition 5~ + 60 +1 < c, then there exists a constant C > 0 such that

0
S n
dV (y,s) < Ctaatoti=e
R e O

for all (z,t) € H.

In order to prove the main theorem of this section, we also give the following
lemma.

Lemma 3.3. Let 0 < o < 1,1 < p < oo, and A\ > —1. Furthermore, let
vyeNG, v,p> —%, o € R, and u be a positive Borel measure on H. Suppose
neR and k > % satisfy the condition

—M —v< U p<K.
2ce p
If there exists a constant M > 0 such that
Fp(l‘v t)

— SPJrnfofler / |8¥Dtu+nw(oc) (x—y,t+ S)|t*(%+ufﬂ+%)@71)d“($’t)
H
<M

for all (y,s) € H, then there exists a constant C > 0 such that
(3.1) / 07DV (e, ) Pdp(z, £) < C / DPu(z, )P dV (2, 1)
H H

for all u € bE(N).

Proof. Let u € bE()\). Differentiating through the integral (2.5), Lemma 2.5
and the Fubini theorem imply that
(3.2)

07Dy u(x,t)

= Cpx / DYu(y, )0} Dy "W (z — y, t + 5)s" P51V (y, 5), (x,t) € H.
H
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We show (3.1) when 1 < p < oo. Let ¢ be the exponent conjugate to p. Then
by (3) and the Holder inequality, we have

00D u(x, t)[P
p
=¢ (/ DY u(y, s)||07 Dy "W (z — y,t + 5)|s*T< LV (y, s>)
H
p
=¢ (/ DY uly, s)||07 DLW (& — y, t 4 5)|s7i s~ 70 5”5 1AV (y, s>>
H

= C/ DY u(y, s)PlOYDYH*W @) (x — y,t + )| sP 0 dV (y, 5)
H

* (/ 3Dy T W ) (@ — y b+ 5)| T TRV (y, s))
H

Since —% —v< % — p < K, Corollary 3.2 implies that

Qs

</ DLW (5 — g, b+ 5)|sP 1R aV (y, s>) < or (Bivrt3)s
H
for all (z,t) € H. Hence by the Fubini theorem, we obtain
[ 120pue P duta) <€ [ (D{uty )P Eyy,9)s7aV (.9)
H H

Because Fy,(y,s) < M for all (y,s) € H, we conclude (3.1) when 1 < p < o0.
We show (3.1) when p = 1. By (3) and the Fubini theorem, we have

[ 1o20ruta t)idu(e.t) < C [ DFuly.s)|Fa(y. )57V (1.9)
H H

Because Fi(y,s) < M for all (y,s) € H, we conclude (3.1) when p = 1. O

Now, we show the main theorem of this section. We give necessary and
sufficient conditions for a measure  to satisfy the Carleson inequality on bf, (\)
with fractional derivatives.

Theorem 3.4. Let0<a<1,1<p<oo, A>—1, and u be a positive Borel

measure on H. Furthermore, let v € N§J, v,p > f%, and 0 > —1 be real

numbers such that o + 1+ (% +v - p) p > 0. Then, the following statements
are equivalent:
(1) There exists a constant C1 > 0 such that

(3.3) / 00DV (e, 8)Pdu(z, £) < Ch / DPu(z, )P dV (2, 1)
H H

for all u € bE(N).
(2) For 0 < ¢ < 1, there exists a constant Cy > 0 such that

[v]

(S5 (@,1)) < Oyt ot (E v =pp
for all (z,t) € H.
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(3) There exists a constant C5 > 0 such that
p(Q (@) < Cytstorit (Gt
for all (z,t) € H.

Proof. (1) = (3). We assume that p satisfies (3.3) of (1). Let x be a real
number such that

A+1 /n 1 n+ly
K > max§ —, (——i—a—i—l)f— —py-
P 2cr p 2c
Let (y,s) € H be fixed. And we put u(z,t) = OJDFW ) (x — y,t + s) for all
(x,t) € H. Then, Lemma 2.1 and Corollary 3.2 imply that u € bE (A). Also by
Lemma 2.3, there exist constants 7,C > 0 such that

n+2|’Y\

07D u(i, 1)] = (2D W (i — gt 4 5)] > O v
for all (z,t) € Q'®(y, 7s). Therefore, we obtain

/ DY (e, 6) Pdpu(a, t) > / 2D (2 — gt 4 5)|Pdpu(e, 1)
H Q) (y,7s)

> Cs*(%iihbrwrn)p/ du(z,t)
Q) (y,7s)

(3.4) = Cs~ IR Q@) (3, 75)).

n+|y|

Moreover, since ¢ > —1 and kK > (% +o+ 1) — —5.~ — p, Lemma 2.1 and

Corollary 3.2 imply that

1
P

(3.5) / OYDITFI (1 — gt 4 8PV (2, 1) < CsFa ot i (M +otn)p
H
for all (y,s) € H. Hence by (3.4) and (3.5), we obtain

w(Q (y, 7)) < CFatotIH(ztv=rip

for all (y,s) € H. Since s is arbitrary, we can get the inequality of (3).
(3) = (1). We assume that p satisfies the inequality of (3). It suffices to
show that the conditions of Lemma 3.3 are satisfied. We put ¢ = 5= + 0+ 1+

(m + v — p)p. Furthermore, let 7 and k be real numbers which satisfy
A+1 -1
(m—i—u )p<n<a+1andm>max{+7U+1—p—n(p)}.
2 p p
Also, we put

_ (M 1
0= (2a—|—1/ p—l—p (p—1).

Then, we have

-1 n n
0+6——+0+1+M+ P e B S .
2c0 p 2c0 2c0
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and

n -1 n+
bre= T yor14 Dy, _,oneZD ntbl,
2a 2a

p 2c
Therefore by (1) of Lemma 2.1 and Lemma 3.1, we obtain

/ DY W (& — y,t 4 8| G DD gy )
H
< O (prrmotyuz)

for all (y,s) € H. Also, since — |27| v < I = p <k, the conditions of Lemma
3.3 are satisfied. Therefore, we can get the inequality (3.3) of (1).

The equivalence (2) < (3) immediately follows from Lemma 2.2. Thus, this
completes the proof. O

4. Boundedness of the representing operator

In this section, we study the boundedness of the representing operator Upx
defined in Section 1. In Theorem 4.3 below, we give the proof of Theorem 1.
First, we introduce the following operator, which is used in our argument. Let
0<a<1l1<p<oo and A > —1. Furthermore, let v € Nj, v € R, and
X = {(z;,t;)} be a sequence in H. For a function v on H, the operator T;’;g
is defined by

A+

= 01t 0).

The following lemma is necessary and sufficient conditions for the operator
T, to be a bounded operator from b%, () to £7. For any finite set £ C H, we
denote by #(FE) the number of points in E.

Lemma 4.1. Let 0 < o < 1, 1 < p < o0, and A\ > —1. Furthermore,
let v € N, v > f%, and X = {(z;,t;)} be a sequence in H. Then, the
following statements are equivalent:

(1) T,y = 6o (A) — €7 is bounded.

(2) There exist L € N and 0 < 6 < 1 such that #(XN Sga)(a:,t)) < L for all
(x,t) € H.

(3) There exists M € N such that #(X N Q) (x,t)) < M for all (x,t) € H.

(4) For any 0 < e < 1, there exists K € N such that X=X, U---UXg and
each sequence X; is e-separated in the a-parabolic sense.

Proof. (1) & (2). Let u € b%()\) and X = {X;} = {(z,t;)} be a sequence in
n Iy,
H. Also, let = Zj t]?“+/\+1+(2"‘+ )p(sz’ where dx; denotes a Dirac measure

at the point X;. Then we have

M v
1T %, E:tm“*l“ S DYy, )P = / 103 DY u(x, £)|Pdu(x, t).
H
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Let (y, s) € H be fixed. If (z;,t;) € Sga)(y, s), then we have }fgs <tj < }Jrgs
Therefore, we obtain

55y Zt* PR (55, 5))

~ s 2L+,\+1+( i +V)p#(X n S(a)(% ))7

where A =~ B means C~'A < B < CA for some C > 0. Hence the equivalence
(1) & (2) immediately follows from Theorem 3.4.

The equivalence (2) < (3) < (4) is already given in Theorem 1 of [7]. Thus,
this completes the proof. ([

In order to prove the main theorem of this section, we also give the following
lemma.

Lemma 4.2. Let 0 < a < 1. For every 8 > —1 and ¢ > 0, there exists a
constant C' > 0 such that

o CF(6 o
’ 2a0\c < Lgrl)/ a 2a CdV(Z,’I’)
(t+s+[z—yP*)e ™ siatl Joo, o (E+r+ [ —2>)

for all0 <6 <1 and (x,t),(y,s) € H, where

(1 _ 62)2‘1+6+1 c
5% {(1 + 52)2(9+1) ( 52 9+1)}

F(5) =

Proof. Let # > —1 and ¢ > 0. We consider the following;:

s°

(t+ s+ |z —y|?)c

-1
36 / 9
— r’dV (z,7T) / rPdV (z,r)
(t+s+]z— y‘2a)c 58 (y,5) 58 (y,s)

—1
0
= 59/ r s dV(z,7) / rdV (z,r) .
Séa)(y,s) (t +s+ |J) - y| oz)c Séa)(y,s)

We note that
0
/ r’dV(z,r)
S5 (y,5)

26\ 1 1+6 \T /1-6\"!
=B, S ] — | ——=s
142 6+11\1-45 1+

28 B, 5% {(1+0)%0FD — (1-9)20*y L,
0+ 1 (1—g2)3a+0+1 ’




1030 YOSUKE HISHIKAWA

where B, is the volume of the unit ball in R™. Moreover, if (z,7) € S(ga) (y,8),
then we have

tr+lo— 2P <t+r+{lz—y[+|y—z2[}*

1 2a
<t+1+6+ |z —yl + 20"
= 1—(58 r—y 1_523

146, 26 , ,

<t - - 20¢ 2(1 _ «

< +(15+ 152)5—1— |z — y|
12 2%

< 1Tt o).

Hence, we obtain

/ . ( )
dV (z,r
S((sa)(yv ) (t4 r ‘LE Z|2a)c

23 B, 63 {(1+6)20tD) — (1 —§)20+D} 59
= 1260+ 1) (1 — §2)35+o+1-c s+ o —y[2o)e
This completes the proof. O

We extend the definition of the representing operator Uj'x in Section 1. Let
0<a<11<p<oo, and A > —1. Furthermore, let 8 € Nj, « € R, and
X = {(z;,t;)} be a sequence in H. For a sequence of real numbers {7;}, we
define a representing operator Uﬁ ¥ by

USE (i D (@, 1)

n+|8
4t%+n—(ﬁ+,\+1
N5t
J

1
)”QfoW(a)(x —xj,t+ 1), (z,t) € H.

The following theorem gives necessary and sufficient conditions for the repre-
senting operator Uf’;g to be bounded from ¢? to bL (A). We note that Theorem
4.3 contains the result of Theorem 1.

Theorem 4.3. Let 0 < a < 1, 1 < p < o0, and A > —1. Furthermore, let
BeNy, k> %, and X = {(x;,t;)} be a sequence in H. Then, the following
statements are equivalent:

(1) U+ 47 — bE(N) is bounded.

(2) For any 0 < e < 1, there exist K € N such that X =X; U---UXg and
each sequence X; is e-separated in the a-parabolic sense.

Moreover, (2) = (1) holds when p = 1.
Proof. (1) = (2). We assume that Uf’;g is the bounded operator from ¢P
to b2 (A). Then, there exists the adjoint operator (Uﬁ’{g)* of Uﬁg’g such that

(UZE)* + (BR(A)* — (¢7)* is bounded. By Lemma 2.6, (UJy)* : b%(\) — (9
is bounded, where g is the exponent conjugate to p. Let {e;} be the standard
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basis of ¢P. Furthermore, let (-,-) be the usual pairing of % and ¢?, and recall

that (-, -} is the integral pairing of b? (A) and b? ()\) defined in Lemma 2.6. For
u € bl (X), we have

(U5) u.e))
(u, UDE (€))

n+|8] e (2 1
[ty E D Dy s )50V (51)
H

2Bl L (2 +A+1)L
=t;° 2 /H u(y, $)OPDEW D (y — 5,5 + t;)s dV (y, s).

By a change of variable y = 2x; — z, we have

() e
n+|8] o (2 1
= I [ D a5 4 1)V (215),
H

where v(z, s) = u(2z; — 2, s). Differentiating through the integral, Lemma 2.5
implies that

Crt1 / v(z,8)0PDEW ) (1 — 2,5+ t;)s7dV (2, 5)
H
= 7D (wlay 1)) = (-7 DI M u(ay 1),
Therefore, we obtain

oy (=D 2ol (AA+D L g e (AL
(U wes) = gty ™ DT (. )
(=Dl (24 Bl pe (a4
Cry1 7

(_1)|6| B,k—(A+1
:(THT“X( Ju,e;).

97D; N u(a;,5)

Hence we have

—1)I8l
By, _ (CDP g -0
(Upx ) u= o T, u
for all u € b%(\). Since (Uf;g)* . b2 (\) — 9 is bounded, so is T~ Y,
Therefore by Lemma 4.1, we obtain the implication (1) = (2).
(2) = (1). We may assume that the sequence X in H is d-separated in the
a-parabolic sense. Let {n;} € ¢’ and (z,t) € H. By Lemmas 2.1 and 4.2, we
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have

U ({n; 1) (@, 0)]
(41 < ij\tnﬂu ~(dr)y P|OPDEW ) (¢ — 2, + 1)

1
P

mOL s (25At)
IB

IN

dv(z,r)

_n_q r

C ) Injlt; > /
Z _ S8 (w5 ,t5) (t+r+|x—z\2a)
st ey

(t+r+|z—2z2) >

+kK

dv(z,r),

nHB\_;'_K

where

o
=0 Injlt; > xi(zm)
J

and x; is the characteristic function of Séa) (xj,t5).

First, we show that Uﬁg’g : P — LP(X) is bounded when 1 < p < co. Let ¢
be the exponent conjugate to p. And we take a real number ¢ such that

(4.2)
O I G LI |B|+Ii—)\—1 7,
2c 2c p p 2«
]
4. —+1 - 1 —
(4.3) (2a+)q q (2a+>q+ e

By the Holder inequality, we obtain
(4.4)

mH e ()L s P
U5 (. )P < ( / fzr)r dV<z,r>>

t—|—r+|a:—z|2a) +r

(z,7)Pri
<C’/ PRI AV (z,r)
t—l—r—l—\x—z\ )2

( P (g )5
X
+

P
q

HIEL

dV(z,r)
ol o) )

Since c satisfies the condition (4.2), Corollary 3.2 implies that
(4.5)

yaa
aq

(" R )a— (g5 A1) E -5
</ Z 2 | |20) 25 dV(z,r) < (D) E+rn-a-1-¢
t+r+ |z — 2z

+K
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Hence by (4.4), (4.5), and the Fubini theorem, we have
1025 (DI,
-/ |U£§<{m}><x,t>|pt*dwx,t)
/ / ()P dV(z,7’)1&(%‘*‘1)%+‘f‘+H =24V (x,t)

(t+r+ \x 2|20y 25 +n

. H(EEr) B -1
< C/ f(z,r)pﬁ/ ( dV (x, t)dV (z,7).
H

| /\

H({t+r+|z— z|2a)%rlxﬁl+“

Since c satisfies the condition (4.3), Corollary 3.2 implies that

(F5+1)5+ba+r-1-¢ . . . .
th? 7 ! dV (z,t) < CT(%-H)%_E = Cr(z-i-l)(P—l)—E,
H (t+7 4 |z — 2[20) 58 +n -

Therefore, we obtain
JOPE L ) < c/H F oD gy ),

L+1)p

Since f(z,7)P < 37, \nj|pt;( X;j(z,7), we have

/ f(z, r)pr(%ﬂ)(p_l)dV(z, T)
H

<oyl E [ ey
i S(a)(afj,t]

_n_q a
< O nilrty =TV SE (@, t)
i
<O Il
i

Thus, Uﬁg’g : P — LP()) is bounded when 1 < p < co.
Next, we show that U5’§ : /1 — L'()) is bounded. By (4.1) and the Fubini
theorem, we have

U3 ( {m})HLl

Z ’I" T‘2c¥‘+'{ A—1
<c / / V(e )PV (at)
t+7"—|—|x—z|2“) 2o TR

51 A
= C/ f(z,7) r2a+“ A= 1/ - dV(x,t)dV (z,r).
H (t+7+ |z — 2|20) 580 +n
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Corollary 3.2 implies that

t)\
/ AV (x,t) < Cr‘(%*‘ﬂ—k—l).
H(t+7+ |z —2[20) 2 tF

Since f(z,7)=>_; |nj|t;ﬁflxj(z, ), we obtain

IUZE il < C/ Flz,r)dV (z,7)
= ORIl VS ) < O Xl

Thus, UL - 01 — L'()) is bounded.

Finally, we show that Uﬁ’;?({nj}) is L(®)-harmonic on H. For 0 < t; < t; <
00, the boundedness of Uﬁ i implies that Up’B ¥ ({n;}) satisfies the integrability
condition (2.2) for all {n;} € 7. Moreover, the norm convergence of UﬁX {n; )
implies that Uﬁ ¥ ({n;}) converges uniformly on R™ x [r,00) for every 7 > 0.

Therefore by (3) of Lemma 2.1, Uﬁ’g({nj}) is L(®-harmonic on H. Thus, we
can get the statement (1) when 1 < p < oo. This completes the proof. ]

5. Representing sequences on parabolic Bergman spaces

In this section, we study representing sequences on b? (). In Theorem 5.3
below, we give the proof of Theorem 2. First, we present the following lemma,
which is used in the proof of Lemma 5.2 below.

Lemma 5.1 (Lemma 3.1 of [6]). Let 0 < a <1 and o0 > 0. Suppose 0 < § <
1/3. Then, there exists a constant C = C(a,0) > 0 independent of 6 with the

1

following property: For every a > 0, s > 0, and &,t > 0 with £ < (%)% t,

we have

/ | : dr<0o— "
T .

o Crstla—en =t ar

The following lemma is useful for the proof of Theorem 5.3.

Lemma 5.2. Let0 <a <1, § € Ny, K > —g¢, and 0 be a real number. Then,
there exists a constant C = C(n,«, 8, k,0) > 0 such that for all (z,t), (y,s) €
H, (z,7) € Séa)(y,s), and 0 < § <1/3,
(5.1)

)0
LB DEW ) (w—y, t+5)—r?OIDFW ) (m—2, t+7)| < C(d +d2)r

(47 + o — 2]20) 5 45
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Proof. We have

|898£DfW(O‘)(:U —y,t+s)— r"afpfw<a> (x—z,t+7)|
< |sPOPDEW @ (z — y, t + 5) — SPOPDEW ) (& — 2.t + )|
+ |5065D5W(“)(x —z,t+s)— reafoW(o‘) (x—z,t+7)|
Hence it suffices to show that there exists a constant C' > 0 independent of §

with the following inequalities
(5.2)

SYOPDEW ) (& —y, t 4 5) — OPDEW ) (2 — 2, t +5)| <

C§zard

(t+ 7+ o — z[20) 54w

and
(5.3)

0
108 DEW (@) (2— 2, t+5)—r? P DEW () (2 — 2, t+7)| < cor -
(t+7r+|z—22) 2t~

We show the inequality (5.2). Since %s <r < }Jrgs and 0 < ¢ < 1/3,
there exists a constant C' > 0 independent of § such that C'~ et < g0 < COp?,
Furthermore, we have

02DEW ) (2 =yt 4 5) — DIDFW (2 — 2,1 + s)|

IN

1
| =) VW e = ) — (o = ).t + )i
0

IN

1
| 12— ol IVL02DEW O oz ) = (= - ), 4 ).
0
Lemmas 2.1 and 5.1 imply that

1
/ |2 =yl - Vo] DEW D (7(2 —y) — (2 — ), ¢ + s)|dr
0

|z —yl
< 0/ —
0 (t4s+|7(z —y) — (2 — z)[20) HEH+w

< c/ S z=yl dr
0 (t2a + 520 + ||z — 2| — 7|z — y|| )P HIFIH 1208
Cdza _ Coza
T (t2@ 4 s 4 |o — 2B T (g gy g gf2e) R

Since %wr < s< 8y and 0 < § < 1/3, we obtain the inequality (5.2).
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We show the inequality (5.3). Let 6 # 0. Then, Lemma 2.1 implies that
‘seafoW(a)(x — 2zt +5) —r?PDEW ) (2 — 2t + 1)

S d
/ . (TeﬁfoW(a) (x —z,t+ T)) dr
-
T

< |9 +

/ P18 DEW ) (2 — 2, t + 7)dr

<of

<C

/ PP DEIW ) (& — 2t 4+ 7)dr

”

s 7_6
/ 2 n+|ﬁ\+ +1 dr
r (t+ T4 |r— 2[2Y) 2a TR

+

s 7_071
/ w47
r (T4 |z — z2Y) 2 TR

s 7.0—1
/ n+8| dr|.
r L+ T+ | — 2[2e) T2 TR
Since %T < s < i—fﬁr and 0 < 0 < 1/3, there exists a constant C' > 0
independent of d such that
Crf=ts—r
(t+7+ |2 — 2]20) 5 +5
Ccor?
(t+7+ |2 — z|20) 5 Hn

Hence, we obtain the inequality (5.3). When § = 0, we can also show the
inequality (5.3), easily. Thus, we obtain the inequality (5.1). O

<

s 7_9—1
/ n+|8] dr
r (LT o — z[2e) e Tt

<

Now, we show the main theorem in this section. Let 0 < § < 1/3. And
suppose that {(x;,t;)} is a d-lattice in the a-parabolic sense, that is, H =
UjS§a) (xj,t;) and there exists 0 < € < ¢ such that {(x;,t;)} is e-separated in
the a-parabolic sense. Then, we take a pairwise disjoint covering {S;} of H as
follows:

(5.4) Sy = S8 (g, 1) \ U S8 (@, t),

k>2

So = S5 (w2, t2)\{ S1U | | 8 (wnote) | ¢
k>3

T

S = 88 (1)) \ U se)ul U 8@k te)
0<j—1 k>j+1
It is easy to see that Séa)(xj,tj) CcS;C Séa) (xj,t;) C S’ﬁ%(xj,tj) and there
exists a constant C' > 0 independent of § with V(S;) < C’?f]?%le for all 7 > 1.
We show our b% (\)-representation theorem.
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Theorem 5.3. Let 0 < a<1,1<p<oo, A>—1, and kK > % be a real
number. Then, there exists 0 < §g < 1/3 such that if a sequence X in H is a §-
lattice in the a-parabolic sense with 0 < § < &y, then X is a bY (N\)-representing
sequence of order K.

Proof. Let X = {(z;,t;)} be a d-lattice in the a-parabolic sense with 0 < § <
1/3. Here, constraints of § will be imposed later. Since X is e-separated in the
a-parabolic sense for some € > 0, Theorem 4.3 implies that Uy : F — bE ()
is bounded. Let {S;} be a pairwise disjoint covering of H deﬁned in (5.4). We
define the operator B, x on b?(\) by

By xu = {égxﬂﬂ)r(%ﬂ)u(%,tj)V(Sj)} :

Since V(S;) < C’t2cx ' for all j > 1 and X is e-separated in the a-parabolic
sense for some ¢ > 0, Lemma 4.1 implies that B, x : b5 (X) — ¢? is bounded.
We also define the operator A7y by

(5.5) Ap xu(z,t) = CuUpx o By x
= O > 5 Ml t)DEW (x — a2y, t + 1)V (S)),
J
where C; is the constant defined in Theorem A. Then, A5 y : b5, (A) — b5()) is

bounded. We show that ||[I — A7 «|| <1 for all § sufficiently small, where I is

the identity operator on b? () and || - || is the operator norm. In fact, Lemma
2.5 implies that for u € b (\) and (z,t) € H,

(5.6) u(z,t) = C’K/ u(y, S)DfW(a)(x —y,t+5)s" " LdV (y, s).
H
Since {S;} is the pairwise disjoint covering of H, we obtain

(5.7) u(@, t) = Cy Yy / u(y, s)DFW ) (x — y,t + 5)s" 1AV (y, 5).
i 75

Hence by (5.7) and (5.5), we have (I — A% x)u(z,t) = Cy (i (2, 1) + Ha(x, 1)),
where

I (2, 1) = Z/ u(y, s)(s" " DFW (@ —y, t+ )
g s
and

Mo, =Y / (u(y, ) — u(y, £ DEW (@ — 2y, ¢+ £5)dV (3, 5).

G 7S
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We estimate the function IT;. Since S; C S(g (x,t;), Lemma 5.2 and the
definition of {S;} imply that

0l < Y [ )
i 7S
X [$"IDEW ) (2 — y bt + 5) — t"»‘_lDfW(o‘)(x —zj,t+1¢,)|dV(y,s)
k—1
< C(6+67%) Z/ [uly, s)ls —dV (y,s)

t+s+|x7 y|2e) za

1 lu(y, s)|s"~
=C(d+ o2 / —dV (y,
( ) H(t+s+|a:—y|"’°‘)%M -2)
= C(6 + 825 )Ur " lu(a, t),

where W*~1 is the operator defined in Section 2. Therefore by Lemma 2.7,
there exists a constant C' > 0 independent of § such that

B ok B
L[|z (x) < CO+823) [0l Lo (r) < C(8 + 82 ]| o)

We estimate the function IIs. Lemma 2.1 implies that

Mz (x,t)| = Z/ July, s) = ulj, t;)|t5HDEW D (@ — 2.t + t)|dV (y, )

July, ) — ulag, )¢5~
<C av .
Z/ t+t +|Z‘—Ji |20¢)2Q+H (y S)

Since S; C S(a)(xj, tj) C Si%(x], i), there exists a constant C' > 0 indepen-
dent of § such that

(5.8) Cltj<s<Ct; andt+s+ |z —y** <Ot +t; +|r— 2%

for all (y, s) € S;. Furthermore by (5.6) and Lemma 5.2, there exists a constant
C > 0 independent of § such that

(5.9)  |u(y, s) — u(xj, t;)|

|D,§\+2W(O‘)(y — 2,54 7) = D)MW (2 — 2 t; + )P AV (2, 7)

Ju(z, )[r

i (s 1+ |y — 2[20) 2 TA

dV(z,r)
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for all (y,s) € S;. Hence, (5.8) and (5.9) imply that

u(z, ) |r Mt
Hy(z,t)| < C(8 + §3%) Z/ / HTLy )x||2a)£+A+2dV(z,r)

K—

S
(t+s+|ars—y|20‘)l+

lu(z,r)|r L
C(s (520 dV (z,
! // Gt ly—apye 1)

-V (y,s)

—dV(y, s)

<t+s+|x—y|2a )3
< C(6 4 670 )WL PAT2ATLY) ().
Therefore by Lemma 2.7, we obtain
L2l (py < C(8+ 625 [T (WA 10) | 1
< OO+ 02) [ WA | Loy < (6 + 075) [[ul| .-

Hence, there exists 0 < §p < 1/3 such that [[I — A7 «|| <1 for all 0 < ¢ < do.
This completes the proof. ([

6. bP (A)-sampling sequences with fractional derivatives

In this section, we introduce b?(\)-sampling sequences, and we show that
b? (\)-representing sequences are closely related to b? (A)-sampling sequences.
We give the definition of b% (A)-sampling sequences. Let 0 < a < 1,1 < p < o0,
A> -1, v eR, and X = {(z;,t;)} be a sequence in H. We say that X is a
bf (M\)-sampling sequence of order v if there exists a constant C' > 0 such that

_ o A+1+
CH iy < ST ID (e )P < Clull )
J

for all w € b% (). In other words, X is a b, (A)-sampling sequence if the operator
T« : b (A) — £ is bounded and bounded below, where T}y = Tﬁ’% is defined
in Section 4. In order to show the main theorem of this section, we present the
following lemma, which is already given in the proof of Theorem 4.3.

Lemma 6.1. Let0<a <1, 1 <p<oo, A>—1, and k > %. Furthermore,

let X be a sequence in H, and q the exponent conjugate to p. If Upx : r —
bP (N\) is bounded, then

P (1),
( p,X) U—mqu

for all u € BL(N).

We also need the following lemma, which is given in [10].
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Lemma 6.2 (Theorem 4.13 of [10]). Let X and Y be Banach spaces. Fur-
thermore, let T be a bounded operator from X into Y. Then, the following
statements are equivalent:

(H)T(X)=Y.

(2) There exists a constant C > 0 such that ||T*y*|| > C||ly*|| for ally* € Y*.

Now, we show the main theorem of this section.

Theorem 6.3. Let 0 < a <1, 1 <p<oo, A>—1, and Kk > %. Further-
more, let X be a sequence in H, and q the exponent conjugate to p. Then, the
following conditions are equivalent:

(1) X is a bY (N\)-representing sequence of order k.

(2) X is a bl (N\)-sampling sequence of order k — (A + 1).

Proof. (1) = (2). We assume that X is a bl (\)-representing sequence of order
K, that is, Ul'y : €¢ — b} (A) is bounded and U’y (¢F) = bf,(A). Then, Lemmas
2.6, 6.1, and 6.2 imply that

r—(A+1 K \*
1T NVl = CllUE ) ulles > Cllull oy

for all u € b%(X). Therefore, T/ **") : BZ(A) — £ is bounded below. More-
over, by Lemma 4.1 and Theorem 4.3, T}y : b3 (\) — £ is bounded for each
v > —2%L Hence, X is a b%(\)-sampling sequence of order £ — (A + 1).
q [e3

(2) = (1). We assume that X is a bl()\)-sampling sequence of order x —
(A + 1), that is, T;;AH) : b2 (\) — 04 is bounded and bounded below. Then,
by Lemma 4.1 and Theorem 4.3, Uyx : €% — b (\) is bounded. Therefore,
Lemma 6.1 implies that

K \* rk—(A+1
(U ) ulles = CITL M Vulles > Cllull oy

for all u € b%()). Hence, by Lemmas 2.6 and 6.2, we obtain UJx(¢?) = bg,()).
Thus, X is a b? (\)-representing sequence of order k. O
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