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SOME EQUALITIES FOR CONTINUED FRACTIONS OF

GENERALIZED ROGERS-RAMANUJAN TYPE

Yongqun Li and Xiantao Wang

Abstract. In this paper, we first discuss the convergence of the con-
tinued fractions of generalized Rogers-Ramanujan type in the modified
sense. Then we prove several equalities concerning these continued frac-

tions. The proofs of our main results are mainly based on the Bauer-Muir
transformation.

1. Preliminary material

If the sequence {Sn(0)} of the approximants of the continued fraction b0 +
K(an/bn) converges to a point f in the extended complex plane C = C∪{∞},
then we call that the continued fraction b0 + K(an/bn) converges to f in the
classical sense, and write

b0 +K(an/bn) = f,

where

Sn(0) = b0 +
a1
b1 +

a2
b2 +

a3
b3 + · · ·+

an
bn

.

Two continued fractions b0 +K(an/bn) and d0 +K(cn/dn) are equivalent if
they have the same sequence of classical approximants. The following result is
from [6] or [8].

Proposition 1.1. Continued fractions b0 +K(an/bn) and d0 +K(cn/dn) are
equivalent if and only if there exists a sequence of non-zero constants {rn} with
r0 = 1 such that cn = rnrn−1an (n = 1, 2, . . .) and dn = rnbn (n = 0, 1, . . .).

As in [5] or [8], we introduce the following definition.
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Definition 1.2. The Bauer-Muir transform of a continued fractions b0 +
K(an/bn) with respect to a sequence {ωn} from C is the continued fraction
d0 +K(cn/dn) whose nth numerators Cn and denominators Dn are given by

C−1 = 1, D−1 = 0,

Cn = An +An−1ωn, Dn = Bn +Bn−1ωn

for n = 0, 1, 2, . . . , where {An} and {Bn} are the nth numerators and denomi-
nators of b0 +K(an/bn).

Definition 1.3. If the Bauer-Muir transform d0 + K(cn/dn) of a continued
fraction b0 + K(an/bn) converges, then we say that the continued fractions
b0 +K(an/bn) converges in the modified sense, and we write

b0 +K(an/bn) = d0 +K(cn/dn) (m.c.).

In fact, what the Bauer-Muir transformation does is to give a continued
fractions d0 + K(cn/dn) whose classical approximants Tn(0) are equal to the
modified approximants Sn(ωn) of b0 + K(an/bn). Therefore, if the Bauer-
Muir transform d0+K(cn/dn) of a continued fraction b0+K(an/bn) converges
to f∗ = limn→∞ Sn(ωn), in the classical sense, then the continued fraction
b0 +K(an/bn) converges to f∗ in the modified sense. Some caution is in order
here, as noted by Thron and Waadeland in [10], if the modifying sequence {ωn}
can be arbitrary, almost anything can happen.

First, let’s recall the following result from [8], which is crucial for the proofs
of our main results.

Proposition 1.4. The Bauer-Muir transformation of a continued fraction b0+
K(an/bn) exists with respect to the sequence of complex numbers {ωn} (n =
0, 1, 2, . . .) if and only if

(1.1) λn = an − ωn−1(bn + ωn) ̸= 0 (n ≥ 1).

If this Bauer-Muir transformation exists, then it is given by d0 +K(cn/dn),
where d0 = b0 + ω0, d1 = b1 + ω1, dn = bn + ωn − ωn−2λn/λn−1 for n ≥ 2 and
c1 = λ1, cn = an−1λn/λn−1 for n ≥ 2.

A natural problem comes out: does a continued fraction converge in the
modified sense although it is not convergent in the classic sense?

This problem has been considered by many authors. Among them, Alladi
discussed this problem for continued fractions of modified Rogers-Ramanujan
type in [1] and proved:

Theorem A. If |q| < 1, then the continued fraction q +K(1/q2n+1), which is
divergent in the classical sense, is convergent in the modified sense.

In [7], Lee and Sohn continued to study this problem and obtained:

Theorem B (Modified Rogers-Ramanujan continued fraction). If |q| < 1,
then the continued fraction q + K(1/q2n+1) converges in the modified sense,
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and

(1.2) q +
1

q3+

1

q5+

1

q7+ · · ·
= 1 +

q

1+

q2

1 +

q3

1 +

q4

1 + · · ·
(m.c.).

For a polynomial p(x) in C[x], we introduce the following notation.

E(p) = {x ∈ C : p(x) = 0} ∪ {0}.

The first aim of this paper is to discuss Theorem B further and get the
following generalization.

Theorem 1.5. For any non-zero polynomial a0(x) in C[x], and for any fixed
x ∈ C− E(a0), if |x| < 1, then the continued fraction

k1a0 +
k22
k1a1+

k22
k1a2+

k22
k1a3+ · · ·

,

which is divergent in the classical sense, converges in the modified sense, and

(1.3)

k1a0 +
k22
k1a1+

k22
k1a2+

k22
k1a3+ · · ·

= k2 +
k1k2a0
k2 +

k22x
d

k2 +

k1k2a0x
d

k2 +

k22x
2d

k2 +

k1k2a0x
2d

k2 +

k22x
3d

k2 +

k1k2a0x
3d

k2 + · · ·
(m.c.),

where k1 and k2 are two non-zero constants, an = a0x
nd for n ≥ 1 and d is a

positive constant.

Remark 1.6. We can get (1.2) by putting k1 = k2 = 1, a0 = q and d = 2 in
(1.3).

In [4], Berndt and Yee studied the continued fractions of generalized Rogers-
Ramanujan type and got the following equality.

Theorem C. For |q| < 1,

1− q

1+

q

1−
q

1+

q

1−
q2

1 +

q2

1 −
q2

1 +

q2

1 − · · ·
=

1

1+

q

1+

q2

1 +

q3

1 +

q4

1 + · · ·
.

As the second aim of this paper, we prove the following two theorems. The
methods used in the proofs of these two theorems follow from [4].

Theorem 1.7. For |q| < 1,

(1.4) 1− q

1+

q

1−
q2

1 +

q2

1 −
q3

1 +

q3

1 − · · ·
=

1

1+

q

1+

q3

1 +

q5

1 +

q7

1 + · · ·
.
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Theorem 1.8. For |q| < 1,

(1.5) 1 +
q

1−
q

1+

q2

1 −
q2

1 +

q3

1 −
q3

1 + · · ·
=

1

1−
q

1+

q3

1 +

q5

1 +

q7

1 + · · ·
.

As an application of Theorems 1.7 and 1.8 and Corollaries 3.1 and 3.4, we
can easily get the following four equalities.

Corollary 1.9.
(1.6)

(
1

1−
q

1+

q

1−
q2

1 +

q2

1 −
q3

1 +

q3

1 − · · ·
) + (

1

1+

q

1−
q

1+

q2

1 −
q2

1 +

q3

1 −
q3

1 + · · ·
) = 2,

(
1

1−
aq

1 +

aq

1 −
aqk+1

1 +

aqk+1

1 −
aq2k+1

1 +

aq2k+1

1 − · · ·
)

(1.7) +(
1

1+

aq

1 −
aq

1 +

aqk+1

1 −
aqk+1

1 +

aq2k+1

1 −
aq2k+1

1 + · · ·
) = 2,

(1.8)

(
1

1−
q

1+

q

1−
q3

1 +

q3

1 −
q5

1 +

q5

1 − · · ·
) + (

1

1+

q

1−
q

1+

q3

1 −
q3

1 +

q5

1 −
q5

1 + · · ·
) = 2,

(
1

1−
q

1+

q

1−
qk+1

1 +

qk+1

1 −
q2k+1

1 +

q2k+1

1 − · · ·
)

(1.9) +(
1

1+

q

1−
q

1+

qk+1

1 −
qk+1

1 +

q2k+1

1 −
q2k+1

1 + · · ·
) = 2.

On page 46 of Ramanujan’s lost notebook [9], there is a theorem which is
stated as follows (see also [2]) and was proved in [3].

Theorem D. Let k ≥ 0, α = (1 +
√
1 + 4k)/2 and β = (−1 +

√
1 + 4k)/2.

Then, for |q| < 1 and Re(q) > 0,

(1.10) 1 +
k + q

1 +

k + q2

1 + · · ·
= α+

q

α+ βq+

q2

α+ βq2+ · · ·
.

In [7], Lee and Sohn obtained the following generalization of (1.10).

Theorem E. For a fixed natural number r, suppose that d ≥ 1 and mr ≥
mr−1 ≥ · · · ≥ m1 ≥ 1. Then we have

(1.11) k1 +
k2 + a1

k1 +

k2 + a2
k1 + · · ·

= α+
a1

α+ βqd+

a2
α+ βq2d+ · · ·

,

where
an = qm1+(n−1)d + qm2+(n−1)d + · · ·+ qmr+(n−1)d

and

β =
−k1 +

√
k21 + 4k2
2

, α = k1 + β.
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The last aim of this paper is to discuss Theorems D and E further. Our
result is as follows.

Theorem 1.10. Let a1(x) be a non-zero polynomial in C[x]. Then for any
fixed x in C− E(a1), we have the following equality.

(1.12) k1 +
k2 + a1

k1 +

k2 + a2
k1 + · · ·

= α+
a1

α+ βxd
+

a2
α+ βx2d

+ · · ·
,

where an = a1x
(n−1)d for n ≥ 2, β = (−k1 +

√
k21 + 4k2)/2, α = k1 + β and d

is a positive constant.

Remark 1.11. We can get (1.11) by putting a1(q) = qm1 + qm2 + · · ·+ qmr in
(1.12), and (1.10) by putting k1 = 1, k2 = k, a1(q) = q and d = 1.

2. The proofs of Theorem 1.5 and its corollaries

Proof of Theorem 1.5. We shall prove (1.3) from the left side to the right side
by using the Bauer-Muir transformation. For convenience, we let

R(x) = k1a0 +
k22
k1a1+

k22
k1a2+

k22
k1a3+ · · ·

.

We choose the modifying factors for R(x) as follows:

ω
(0)
i = k2 − k1ai = k2 − k1a0x

id, i = 0, 1, 2, . . . .

Obviously, λ
(0)
i = k1k2a0x

(i−1)d ̸= 0 (i = 1, 2, 3, . . .). Then the Bauer-Muir
transformation implies that

R(x) = k2 +
k1k2a0
k2 +

k22x
d

k2 − k2xd + k1a0xd+

k22x
d

k2 − k2xd + k1a0x2d+ · · ·

= k2 +
k1k2a0
k2 +

k22x
d

R1(x)
,

where

R1(x) = k2−k2x
d+k1a0x

d+
k22x

d

k2 − k2xd + k1a0x2d+

k22x
d

k2 − k2xd + k1a0x3d+ · · ·
.

Now we choose the modifying factors for R1(x) as follows:

ω
(1)
i = k2x

d − k1a0x
(i+1)d, i = 0, 1, 2, . . . .

We easily know that λ
(1)
i = k1k2a0x

id ̸= 0 (i = 1, 2, 3, . . .). By using the
Bauer-Muir transformation once more, we have that

R1(x) = k2 +
k1k2a0x

d

k2 +

k22x
2d

k2 − k2x2d + k1a0x2d+

k22x
2d

k2 − k2x2d + k1a0x3d+ · · ·

= k2 +
k1k2a0x

d

k2 +

k22x
2d

R2(x)
,
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where

R2(x) = k2 − k2x
2d + k1a0x

2d

+
k22x

2d

k2 − k2x2d + k1a0x3d+

k22x
2d

k2 − k2x2d + k1a0x4d+ · · ·
.

For j = 2, 3, 4, . . ., we let

Rj(x) = k2 − k2x
jd + k1a0x

jd +
k22x

jd

k2 − k2xjd + k1a0x(j+1)d

+
k22x

jd

k2 − k2xjd + k1a0x(j+2)d+

k22x
jd

k2 − k2xjd + k1a0x(j+3)d+ · · ·
.

By applying the Bauer-Muir transformation to Rj(x) (j = 2, 3, 4, . . .) and

repeating the procedures as above, we find that, if we take ω
(j)
i = k2x

jd −
k1a0x

(j+i)d (i = 0, 1, 2, . . .), then λ
(j)
i = k1k2a0x

(i−1+j)d ̸= 0 (i = 1, 2, 3, . . .).
Similar discussions as above show that
(2.1)

R(x) = k2 +
k1k2a0
k2 +

k22x
d

k2 − k2xd + k1a0xd+

k22x
d

k2 − k2xd + k1a0x2d+ · · ·

= k2 +
k1k2a0
k2 +

k22x
d

k2 +

k1k2a0x
d

k2 +

k22x
2d

k2 − k2x2d + k1a0x2d

+
k22x

2d

k2 − k2x2d + k1a0x3d+ · · ·
= · · ·

= k2 +
k1k2a0
k2 +

k22x
d

k2 +

k1k2a0x
d

k2 +

k22x
2d

k2 +

k1k2a0x
2d

k2 + · · ·

+
k22x

(j+1)d

k2 − k2x(j+1)d + k1a0x(j+1)d+

k22x
(j+1)d

k2 − k2x(j+1)d + k1a0x(j+2)d+ · · ·
.

By letting j tend to ∞ in (2.1), we get (1.3).
The left side of (1.3) and the continued fraction b∗0+K(a∗n/b

∗
n) are equivalent,

where a∗n = rnrn−1k
2
2 for n > 0, b∗n = rnk1an for n ≥ 0, and r0 = 1, rn = 1/k2

for n ≥ 1. But the continued fraction b∗0 +K(a∗n/b
∗
n) diverges by Stern-Stolz’s

theorem, cf. [6] and [8]. Hence the left side of (1.3) diverges in the classical
sense.

Since xn → 0, we see that the right side of (1.3) converges by Proposition
1.1 and Worpitzky’s theorem (cf. Theorem I.3 in [8]). Hence the left side of
(1.3) converges in the modified sense. □

It follows from Theorem 1.5 that the following results are obvious.
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Corollary 2.1. For |q| < 1, the continued fraction k1q +K(k22/k1q
2n+1) con-

verges in the modified sense, and
(2.2)

k1q+
k22
k1q3+

k22
k1q5+

k22
k1q7+ · · ·

= k2+
k1k2q

k2 +

k22q
2

k2 +

k1k2q
3

k2 +

k22q
4

k2 + · · ·
(m.c.),

where k1 and k2 are two non-zero constants if q ̸= 0.

Proof. We can get (2.2) from Theorem 1.5 by putting a0 = q and d = 2. □

Remark 2.2. We can get (1.2) from (2.2) by putting k1 = 1 and k2 = 1.

Corollary 2.3. For |q| < 1, the continued fraction kq+K(1/kq2n+1) converges
in the modified sense, and

(2.3) kq +
1

kq3+

1

kq5+

1

kq7+ · · ·
= 1 +

kq

1 +

q2

1 +

kq3

1 +

q4

1 + · · ·
(m.c.),

where k is a non-zero constant.

Proof. We can get (2.3) from Theorem 1.5 by putting a0 = q, d = 2, k1 = k
and k2 = 1. □

Corollary 2.4. For |q| < 1, the continued fraction q+K(k2/q2n+1) converges
in the modified sense, and

(2.4) q +
k2

q3+

k2

q5+

k2

q7+ · · ·
= k +

kq

k +

k2q2

k +

kq3

k +

k2q4

k + · · ·
(m.c.),

where k is a non-zero constant.

Proof. We can get (2.4) from Theorem 1.5 by putting a0 = q, d = 2, k1 = 1
and k2 = k. □

3. The proofs of Theorems 1.7, 1.8 and their corollaries

Proof of Theorem 1.7. For convenience, we denote the left side of (1.4) by r(q).
That is

r(q) = 1− q

1+

q

1−
q2

1 +

q2

1 −
q3

1 +

q3

1 − · · ·
.

Set

(3.1) f(q, a) = 1− q

1+

q

a
.

Then

(3.2) f(q, a) =
a+ q − aq

a+ q
and 1− f(q, a) =

aq

a+ q
.

Hence

(3.3)
1− f(q, a)

f(q, a)
=

aq

a+ q − aq
=

q

1 + q 1−a
a

=
q

1+

q(1− a)

a
.
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Let F (q, A) = r(q) with

F (q, A) = 1− q

1+

q

A
.

Then (3.1), (3.2) and (3.3) imply that

(3.4) F (q, A) =
A+ q −Aq

A+ q
=

1

1+

q

1+

q(1−A)

A
.

By replacing A on the right side of (3.4) by f(q2, a) and using (3.3), we get
that

(3.5) F (q,A) =
1

1+

q

1+

q3

1 +

q2(1− a)

a
.

We replace a in (3.5) by f(q3, a), . . .. By repeating this procedure we see
that the 2nth approximant of the left hand side of (1.4) is equal to the nth
approximant of the right hand side. Since qn → 0, we know that two sides
of (1.4) converge by Worpitzky’s theorem (cf. Theorem I.3 in [8]). Hence the
limit of the sequence of the 2nth approximants of the left hand side of (1.4) is
equal to the one of the sequence of the nth approximants of the left hand side.
Therefore (1.4) is true. □

The following equality follows from the similar arguments as in the proof of
Theorem 1.7.

Corollary 3.1. For |q| < 1,

1− aq

1 +

aq

1 −
aqk+1

1 +

aqk+1

1 −
aq2k+1

1 +

aq2k+1

1 − · · ·

=
1

1+

aq

1 +

a2qk+2

1 +

a2q3k+2

1 +

a2q5k+2

1 + · · ·
,

where k = 1, 2, 3, . . . and a is a constant.

By Corollary 3.1, we can easily get the following two equalities.

Corollary 3.2. For |q| < 1,

1− q

1+

q

1−
q3

1 +

q3

1 −
q5

1 +

q5

1 − · · ·
=

1

1+

q

1+

q4

1 +

q8

1 +

q12

1 + · · ·
.

Corollary 3.3. For |q| < 1,

1− q

1+

q

1−
qk+1

1 +

qk+1

1 −
q2k+1

1 +

q2k+1

1 − · · ·

=
1

1+

q

1+

qk+2

1 +

q3k+2

1 +

q5k+2

1 + · · ·
,

where k = 1, 2, 3, . . ..
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Proof of Theorem 1.8. For convenience, we denote the left side of the equality
(1.5) by B(q). That is

B(q) = 1 +
q

1−
q

1+

q2

1 −
q2

1 +

q3

1 −
q3

1 + · · ·
.

Set

(3.6) g(q, a) = 1 +
q

1−
q

a
.

Then

(3.7) g(q, a) =
a− q + aq

a− q
and g(q, a)− 1 =

aq

a− q
.

Hence

(3.8)
g(q, a)− 1

g(q, a)
=

aq

a− q + aq
=

q

1 + q a−1
a

=
q

1+

q(a− 1)

a
.

Let G(q,A) = B(q) with

G(q, A) = 1 +
q

1−
q

A
.

Then (3.6), (3.7) and (3.8) imply that

(3.9) G(q, A) =
A− q +Aq

A− q
=

1

1−
q

1+

q(A− 1)

A
.

By replacing A on the right side of (3.9) by g(q2, a) and using (3.8), we get
that

(3.10) G(q,A) =
1

1−
q

1+

q3

1 +

q2(a− 1)

a
.

We replace a in (3.10) by f(q3, a), . . .. By repeating the procedure as above
we see that the 2nth approximant of the left hand side of (1.5) is equal to the
nth approximant of the right hand side. Since qn → 0, we see that two sides
of (1.5) converge by Worpitzky’s theorem (cf. Theorem I.3 in [8]). Hence the
limit of the sequence of the 2nth approximants of the left hand side of (1.5)
is equal to the one of the sequence of the nth approximants of the right hand
side. Therefore (1.5) is true. □

It follows from similar arguments in Theorem 1.8 that we can get the fol-
lowing.

Corollary 3.4. For |q| < 1,

1 +
aq

1 −
aq

1 +

aqk+1

1 −
aqk+1

1 +

aq2k+1

1 −
aq2k+1

1 + · · ·

=
1

1−
aq

1 +

a2qk+2

1 +

a2q3k+2

1 +

a2q5k+2

1 + · · ·
,

where k = 1, 2, 3, . . . and a is a constant.
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By Corollary 3.4, we can easily get the following two equalities.

Corollary 3.5. For |q| < 1,

1 +
q

1−
q

1+

q3

1 −
q3

1 +

q5

1 −
q5

1 + · · ·
=

1

1−
q

1+

q4

1 +

q8

1 +

q12

1 + · · ·
.

Corollary 3.6. For |q| < 1,

1 +
q

1−
q

1+

qk+1

1 −
qk+1

1 +

q2k+1

1 −
q2k+1

1 + · · ·

=
1

1−
q

1+

qk+2

1 +

q3k+2

1 +

q5k+2

1 + · · ·
,

where k = 1, 2, 3, . . ..

The proof of Corollary 1.9. We need only to prove the equality (1.6). The
proofs of the equalities (1.7), (1.8) and (1.9) follow from similar reasoning. By
Theorem 1.7, we have

(3.11)
q

1+

q3

1 +

q5

1 +

q7

1 + · · ·
= −1 +

1

1−
q

1+

q

1−
q2

1 +

q2

1 −
q3

1 +

q3

1 − · · ·
.

By Theorem 1.8, we have

(3.12)
q

1+

q3

1 +

q5

1 +

q7

1 + · · ·
= 1− 1

1+

q

1−
q

1+

q2

1 −
q2

1 +

q3

1 −
q3

1 + · · ·
.

The equality (1.6) follows from (3.11) and (3.12). □

4. The proof of Theorem 1.10

Proof of Theorem 1.10. We shall prove the equality (1.12) from the left side to
the right side by using the Bauer-Muir transformation. We denote the left side
of (1.12) by B(x). That is

B(x) = k1 +
k2 + a1

k1 +

k2 + a2
k1 + · · ·

.

We choose the modifying factors for B(x) as follows:

ω
(0)
i = β, i = 0, 1, 2, . . . .

Since
λ
(0)
i = a1x

(i−1)d = ai ̸= 0, i = 1, 2, 3, . . . ,

it follows from the Bauer-Muir transformation that

B(x) = k1 +
k2 + a1

k1 +

k2 + a2
k1 + · · ·

= k1 + β +
a1

k1 + β+

(k2 + a1)x
d

k1 + β − βxd
+

(k2 + a2)x
d

k1 + β − βxd
+ · · ·

= α+
a1

B1(x)
,
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where

B1(x) = α+
k2x

d + a2
α− βxd

+

k2x
d + a3

α− βxd
+ · · ·

.

We choose the modifying factors for B1(x) as follows:

ω
(1)
i = βxd, i = 0, 1, 2, . . . .

Then λ
(1)
i = ai+1 ̸= 0 (i = 1, 2, 3, . . .). The Bauer-Muir transformation

yields that

B1(x) = α+ βxd +
a2

α− βxd + βxd
+

(k2x
d + a2)x

d

α− βx2d
+

(k2x
d + a3)x

d

α− βx2d
+ · · ·

= α+ βxd +
a2

B2(x)
,

where

B2(x) = α+
k2x

2d + a3
α− βx2d

+

k2x
2d + a4

α− βx2d
+ · · ·

.

By taking ω
(k)
i = βxkd (i ≥ 0) we see that λ

(k)
i = ai+k ̸= 0 (i ≥ 1) for any

k ≥ 0. The equality (1.12) follows. □
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