DOI QR코드

DOI QR Code

Inhibitory Effects of Ethanol Extracts from Polygoni multiflori radix and Cynanchi wilfordii radix on Melanogenesis in Melanoma Cells

하수오와 백하수오의 에탄올 추출물에 의한 B16/F10 Melanoma 세포주의 멜라닌 생성 억제효과

  • Seo, Hee (Dept. of Food Science and Nutrition, Soon Chun Hyang University) ;
  • Seo, Geun-Young (Biopharm Human Resources Department Center, Soon Chun Hyang University) ;
  • Ko, Su-Zie (Dept. of Food Science and Nutrition, Soon Chun Hyang University) ;
  • Park, Young-Hyun (Dept. of Food Science and Nutrition, Soon Chun Hyang University)
  • 서희 (순천향대학교 자연과학대학 식품영양학과) ;
  • 서근영 (순천향대학교 의약바이오인재양성센터) ;
  • 고수지 (순천향대학교 자연과학대학 식품영양학과) ;
  • 박영현 (순천향대학교 자연과학대학 식품영양학과)
  • Received : 2011.06.02
  • Accepted : 2011.07.22
  • Published : 2011.08.31

Abstract

Anti-oxidative activity and tyrosinase inhibitory activity of various ethanol extracts of Polygoni multiflori radix (PMR) and Cynanchi wilfordii radix (CWR) were compared to identify an anti-oxidant and whitening agent source from nature. We conducted an investigation into the anti-oxidant activities of PMR and CWR ethanol extracts by measuring total polyphenol content, total flavonoid content, and ABTS radical capacity. The total polyphenol contents of PMR and CWR were 17.31${\pm}$0.54 mg GA/eq g, and 2.75${\pm}$0.22 mg GA/eq g, respectively. The total flavonoid contents of PMR and CWR were 6.38${\pm}$0.39 mg naringine/eq g, and 1.34${\pm}$0.09 mg naringine/eq g, respectively. The 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) radical decolorization of PMR and CWR were 96.89${\pm}$0.21% at 1 mg/mL and 93.49${\pm}$0.76% at 50 mg/mL. Melanoma cells were cultured with the PMR and CWR ethanol extracts for 48 hr, and total melanin content as a final product and the activity of tyrosinase, a key enzyme, in melanogenesis, were estimated. The PMR and CWR ethanol extracts increased melanin content and tyrosinase activity in a dose-dependent manner. These results suggest that PMR and CWR ethanol extracts could be useful as a skin whitening agent.

멜라닌 색소는 피부를 보호하는 긍정적인 면을 갖고 있으나 이의 과잉생성은 기미, 주근깨, 피부 반점 등을 유발하며 멜라닌 전구물질의 독성으로 인한 세포의 사멸 및 피부암 생성이 촉진되기도 한다. 이에 적하수오와 백하수오가 멜라닌 세포의 멜라닌화에 관여하는지를 알아보기 위하여 각각의 에탄올 추출물이 tyrosinase 효소활성 및 멜라닌 생성에 미치는 영향을 조사하였다. 하수오와 백하수오의 총 폴리페놀 함량은 각각 17.31${\pm}$0.54 mg GA eq/g, 2.75${\pm}$0.22 mg GA eq/g로 나타났으며, 하수오와 백하수오의 총 플라보노이드 함량은 각각 6.38${\pm}$0.39 mg naringine eq/g, 1.34${\pm}$0.09 mg naringine eq/g로 폴리페놀과 플라보노이드 함량은 백하수오보다 하수오에서 많은 것으로 나타났다. 하수오와 백하수오의 각각 농도별에 따른 ABTS radical 소거활성은 하수오 1 mg/mL 농도에서 96.89${\pm}$0.22%로 나타났으나, 백하수오는 1 mg/mL 농도에서 6.24${\pm}$0.33%로 하수오에 비하여 소거활성이 낮게 나타났다. 에탄올 추출물에 의한 세포 생존율은 최고 100 ${\mu}g/mL$ 처리 시 하수오와 백하수오 각각에서 93.2${\pm}$1.95%, 91.07${\pm}$4.05%로 두 가지 추출물에서 유의할 만한 변화를 나타내지 않았다. 멜라닌 생성에 미치는 영향에 대하여 10 ${\mu}g/mL$ 농도에서는 각각 75.9${\pm}$2.23%, 60.77${\pm}$3.07%로 나타났으며, 100 ${\mu}g/mL$ 농도에서는 각각 42.93${\pm}$ 2.26%, 28.37${\pm}$3.05%로 처리농도가 증가함에 따라 멜라닌 생성이 점점 감소되는 경향을 보였으며 통계학적으로도 유의성이 관찰되었다. 이 결과는 하수오와 백하수오의 에탄올 추출물이 세포에 독성을 미치지 않으며 멜라닌 생성 저해에 효과적인 미백제로서의 가능성을 제시하였다.

Keywords

References

  1. Kim CM, Shin MG, Ahn DH, Lee GS. 1998. Chinese herbal medicine. Jungdam, Seoul, Korea. p 2152-2153, 5947-5955.
  2. Korea Food & Drug Administration. 2002. The Korean pharmacopoeia & Korea herbal pharmacopoeia. Doung won cultural history, Seoul, Korea. p 169, 397.
  3. College of oriental medicine phytology professor joint writing. 1991. Phytology. Younglim, Seoul, Korea. p 499-500, 583-584.
  4. Mitsuhashi H, Sakurai K, Nomura T. 1966. Constituents of Asclepiaclaceae plants. Chem Pharm Bill 14: 712-717. https://doi.org/10.1248/cpb.14.712
  5. Fujimoto H, Satoh Y, Yamaguchi K, Yamazaki M. 1998. Monoamine oxidase inhibitory constituents from Anixiella micropertusa. Chem Pharm Bull 46: 1506-1510. https://doi.org/10.1248/cpb.46.1506
  6. Hatano T, Uebayashi H, Ito H, Shiota S, Tsuchiya T, Yoshida T. 1999. Phenolic constituents of cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. Chem Pharm Bull 47: 1121-1127. https://doi.org/10.1248/cpb.47.1121
  7. Yen GC, Chen HW, Duh PD. 1998. Extraction and identification of an antioxidative component from Jue Ming Zi. J Agric Food Chem 46: 820-824. https://doi.org/10.1021/jf970690z
  8. Kuo YD, Sun CM, Ou JC, Tsai WJ. 1997. A tumor cell growth inhibitor from polygonum hypolencum Ohwi. Life Sci 61: 2335-2344. https://doi.org/10.1016/S0024-3205(97)00937-5
  9. Yoneta A, Yamashita T, Jin YH, Kondo S, Jimbow K. 2004. Ectopic expression of tyrosinase increases melanin synthesis and cell death following UVB irradiation in fibroblasts from familial atypical multiple mole and melanoma (FAMMM) patients. Melanoma Res 14: 387-394. https://doi.org/10.1097/00008390-200410000-00009
  10. Paramonov BA, Turkovskii II, Potokin IL, Yuriova NA, Chebotarev VY. 2002. Photoprotective activity of melanin preparations in human skin exposed to UV irradiation: dependence on previous photoexposure. Bull Exp Biol Med 134: 366-369. https://doi.org/10.1023/A:1021960315307
  11. Urabe K, Aroca P, Tsukamoto K, Mascagna D, Paulumbo A, Prata G, Hearing VJ. 1994. The inherent cytotoxicity of melanin precursors. Biochim Biophys Acta 1221: 272-278. https://doi.org/10.1016/0167-4889(94)90250-X
  12. Weixiong L, Helene ZH. 1997. Induced melanin reduces mutations and cell killing in mouse melanoma. Phytochem Phytobiol 65: 480-485. https://doi.org/10.1111/j.1751-1097.1997.tb08594.x
  13. Kaufman RJ. 1991. Vectors used for expression in mammalian cells. Method Enzymol 205: 87-92.
  14. Kameyama K, Takemura T, Hamada Y, Sakai C, Kondoh S, Nishi-yama S. 1993. Pigment production in murine melanoma cells is regulated by tyrosinase, tyrosinase-related protein 1 (TRP), dopachrome tautomerase (TRP 2) and a melanogenic inhibitor. J Invest Dermatol 100: 126-132. https://doi.org/10.1111/1523-1747.ep12462778
  15. Gutfinger T. 1981. Polyphenols olive oils. J Am Oil Chem Soc 58: 966-968. https://doi.org/10.1007/BF02659771
  16. Zia Z, Tang M, Wo J. 1999. The determination of flavonoid contents in mulberry and their scavenging effect on superoxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  17. Venden Berg R, Haenen GR, Van de Berg H, Bast A. 1999. Applicability of an improved trolox equivalent anti-oxidant capacity (TEAC) assay for evaluation of anti-capacity measurements of mixture. Food Chem 66: 511-517. https://doi.org/10.1016/S0308-8146(99)00089-8
  18. Mosmann T. 1983. Rapid colorimetric assay for the cellular growth and survival: application to proliferation and cytotoxic assay. J Immun Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  19. Hosoi J, Abe E, Suda T, Kuroki T. 1985. Regulation of melanin synthesis of B16 mouse cells by 1 a-25-dihydroxy vitamin D3 and retinoic acid. Cancer Res 45: 1417-1478.
  20. Matinez-Esparza M. 1998. Mechanisms and melanogenesis inhibition by tumor necrosis factor-${\alpha}$ in B16/F10 mouse melanoma cells. Eur J Biochem 225: 139-146.
  21. Madsen HL, Andresen CM, Jorgensen LV. 2000. Radical scavenging by dietary flavonoids. Eur Food Technol 211: 240-246. https://doi.org/10.1007/s002170000189
  22. Madsen HL, Nielsen BR, Bertelsen G, Skibsted LH. 1996. Screen of antioxidative activity of spices. Food Chem 57: 331-377. https://doi.org/10.1016/0308-8146(95)00248-0
  23. Kim HJ, Jun BS, Kim SK, Cha JY, Cho YS. 2000. Polyphenolic compound content and antioxidative activities by extract from seed, sprout and flower of safflower. J Korean Soc Food Sci Nutr 29: 1127-1132.
  24. Miller NJ, Rice-Evans C, Davies MJ, Copinaththan V, Milner A. 1993. A novel method for measuring anti-oxidant capacity and its application to monitering the antioxidant status in premature neonants. Clin Sci 26: 265-277.
  25. Kim JE, Joo SI, Seo JH, Lee SP. 2009. Antioxidant and ${\alpha}$-glucosidase inhibitory effect of tartary buckwheat extract obtained by the treatment of different solvents and enzymes. J Korean Soc Food Sci Nutr 38: 989-995. https://doi.org/10.3746/jkfn.2009.38.8.989
  26. Piao L, Park HR, Park YK, Lee SK, Park JH, Park MK. 2002. Mushroom tyrosinase inhibition activity of some hormones. Chem Pharm Bull 50: 309-311. https://doi.org/10.1248/cpb.50.309
  27. Yoneta A, Yamashita T, Jin HY, Kondo S, Jimbow K. 2004. Ectopic expression of tyrosinase increases melanin synthesis and cell death following UVB irradiation in fibroblasts from familial atypical multiple mole and melanoma patients. Melanoma Res 14: 387-394. https://doi.org/10.1097/00008390-200410000-00009
  28. Hearing VJ. 1999. Biochemical control of melanogenesis and melanosomal organization. Soc Invest Dermatol 4: 24-28. https://doi.org/10.1038/sj.jidsp.5640176

Cited by

  1. Effects of Polygoni Multiflori Radix on the Elastase, and Collagenase Activities and the Procollagen Synthesis in Hs68 Human Fibroblasts vol.29, pp.1, 2014, https://doi.org/10.6116/kjh.2014.29.1.7
  2. Inhibitory effects of mung bean (Vigna radiata L.) seed and sprout extracts on melanogenesis vol.25, pp.2, 2016, https://doi.org/10.1007/s10068-016-0079-6
  3. Inhibitory Effects of Dendropanax Morbifera Leaf Extracts on Melanogenesis through Down-Regulation of Tyrosinase and TRP-2 vol.25, pp.5, 2014, https://doi.org/10.14478/ace.2014.1058
  4. Physicochemical and Antioxidant Properties of Yanggaeng with Cynanchi wilfordii Radix Powder vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1954
  5. Antioxidant and antimicrobial activities of Jeok Hasuo (Polygonum multiflorum Thunb.) and Baek Hasuo (Cynanchi wilfordii Radix) root extracts vol.23, pp.3, 2016, https://doi.org/10.11002/kjfp.2016.23.3.432
  6. Effects of Tarak, Korean Traditional Fermented Milk, on Proliferation of Immune Cells and Melanin Biosynthesis vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1759
  7. Synthesis, Antioxidative and Whitening Effects of Novel Cysteine Derivatives vol.38, pp.1, 2017, https://doi.org/10.1002/bkcs.11050
  8. 황칠나무 잎 추출물의 세포 항산화 활성과 미백활성 측정 vol.41, pp.4, 2013, https://doi.org/10.4014/kjmb.1311.11001
  9. 백하수오 에탄올추출물이 방사선조사에 따른 흰쥐의 혈구 및 장기에 미치는 영향 vol.39, pp.3, 2011, https://doi.org/10.17946/jrst.2016.39.3.21
  10. 적하수오 에탄올 추출물의 melanin 합성 촉진효과 vol.27, pp.4, 2011, https://doi.org/10.5352/jls.2017.27.4.423
  11. 노봉방에서 추출된 카페인산 페네틸 에스테르가 함유된 한방화장품의 미백 개선에 관한 임상적 연구 vol.38, pp.3, 2017, https://doi.org/10.13048/jkm.17027
  12. Melanogenesis 양성적 조절 에 관여하는 최근 천연물의 동향 vol.28, pp.6, 2018, https://doi.org/10.5352/jls.2018.28.6.745
  13. Effects of Cynanchi Wilfordii Radix and Polygoni Multiflori Radix liquors on lipid peroxidation and antioxidant activity in rat serum amd brain tissue vol.26, pp.3, 2011, https://doi.org/10.11002/kjfp.2019.26.3.350
  14. Thermal Coursed Effect of Comprehensive Changes in the Flavor/Taste of Cynanchi wilfordii vol.84, pp.10, 2011, https://doi.org/10.1111/1750-3841.14797
  15. Comparison of Active Compounds for Each Supplement after Processing Methods of KIOM Polygonum multiflorum Thunberg Using Various Ingredient(s) vol.54, pp.5, 2011, https://doi.org/10.14397/jals.2020.54.5.37
  16. Zingiber mioga Extract Improves Moisturization and Depigmentation of Skin and Reduces Wrinkle Formation in UVB-Irradiated HRM-2 Hairless Mice vol.11, pp.3, 2011, https://doi.org/10.3390/app11030976