DOI QR코드

DOI QR Code

스테비아(Stevia rebaudiana Bertoni)에 있어서 유사미소중력, 진동 및 저온처리에 의한 항산화 활성 변화

Changes of Antioxidant Enzymes in Stevia Plants under Clinorotation, Shaking, and Low Temperature Stresses

  • 최용상 (전북대학교 자연과학대학 생명과학과) ;
  • 정문웅 (우석대학교 식품과학대학 외식산업조리학과) ;
  • 소웅영 (전북대학교 자연과학대학 생명과학과) ;
  • 한경식 (우석대학교 보건복지대학 화장품미용학과) ;
  • 여읍동 (전북대학교 자연과학대학 생명과학과)
  • Choi, Yong-Sang (Department of Biological Science, Chonbuk National University) ;
  • Jung, Mun-Yhung (Department of Food Science and Culinary Arts, Woosuk University) ;
  • Soh, Woong-Young (Department of Biological Science, Chonbuk National University) ;
  • Han, Kyeong-Sik (Department of Beauty and Cosmetics, College of Health and Welfare, Woosuk University) ;
  • Yeo, Up-Dong (Department of Biological Science, Chonbuk National University)
  • 투고 : 2011.01.04
  • 심사 : 2011.01.28
  • 발행 : 2011.08.31

초록

유사미소중력, 진동 그리고 저온과 같은 물리적 스트래스하에서 4일간 자란 약용식물인 스테비아(Stevia rebaudiana Bertoni)는 대조구에 비해 3.6%, 21% 그리고 8.7%의 생체 중량의 감소를 보였다. 합성 항산화물질인 AA(ascorbic acid)와 BHA(beta-hydroxyacetic acid)는 비교적 약한 22%와 27%의 항산화 활성을 보였다. 유사미소중력하에서 스테비아의 DPPH(2,2-diphenyl-1-picryl hydrazal)의 음이온 소거효과는 대조구보다 지속적으로 더 높게 나타났으나, 진동과 저온처리의 처리효과는 급히 증가했다가 진동의 경우는 6시간 후에 감소되고 저온처리의 경우는 24시간 후에 대조구 수준으로 감소되었다. 유사미소중력하에서 SOD활성은 대조구에 비해 147%, 진동과 저온처리는 각각 121%와 125%로 증가를 보였다. 이상의 결과로부터 유사미소중력스트레스는 다른 스트레스보다 스테비아의 항산화 활성에 더 효과적인 영향을 미치는 것이 분명해졌다.

A medicinal herb, Stevia rebaudiana Bertoni which is grown under physical stresses such as simulated microgravity, shaking, and low temperature for 4 days, showed fresh weight decrease of 3.6%, 21% and 8.7% compared with the respective control. On control plants, the radical scavenging value of DPPH represented 86% and 55%, respectively in the leaves and stems extracts. Relatively weak antioxidant activities of 22% and 27% were measured respectively in AA (ascorbic acid) and BHA (beta-hydroxyacetic acid) known as synthetic antioxidants. The radical scavenging effect of DPPH (2,2-diphenyl-1-picryl hydazal) in stevia plants under a simulated microgravity was observed to be consistently higher relative to the control, whereas those effects of shaking and low temperature treatments rapidly increased and then reduced after 6 hours in case of shaking process and 24 hours in case of low temperature treatment, which results had similar levels of scavenging effects to the control. The plants under simulated microgravity showed the highest level of activity with the value of 147% and the shaking and low temperature treatments showed the increases of SOD activity by 121% and 125%, respectively. From the above results, it is clarified that the simulated microgravity is more effective to the antioxidant activity than those of other abiotic stresses.

키워드

참고문헌

  1. Anderson, M.D., T.K. Prasad and C.R. Stewart. 1995. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109:1247-1257. https://doi.org/10.1104/pp.109.4.1247
  2. Bowler, C., M. M. Van and D. Inze. 1992. Superoxide dismutase and stress tolerance. Plant Mol. Biol. 43:83-116.
  3. Bowler, C., W. Van Camp, M. Can Montagu and D. Inze. 1994. Superoxide dismutase in plants. CRC. Rev. Plant Sci. 13: 199-218. https://doi.org/10.1080/07352689409701914
  4. Chon S.U., H.O. Boo and S.Y. Lee. 2006. Assessment on in vitro antioxidant properties of common thistle (Cirsium pendulum Fisch.) plant parts. Korean J. Med. Crop Sci. 14: 82-86.
  5. Donnelly, J.K., K.M. McLellan, J.L. Walker and D.S. Robinson. 1989. Superoxide dismutase in foods. A review. Food Chem. 33:243-270. https://doi.org/10.1016/0308-8146(89)90036-8
  6. Foyer, C.H. 1993. Ascorbic acid, In G. Alscher and J.L. Hess (eds.). Antioxidants in higher plants. CRC Press, Boca Raton, FL, USA. pp. 31-58.
  7. Hong, S.C., J.B. Jeong, G.H. Park, J.S. Kim, E.W. Seo and HJ. Jeong. 2009. Anti-oxidant Effect of Agastache rugosa on oxidative damage induced by H2O2 in NIH 3T3 cell. Korean J. Plant Res. 12:498-505.
  8. Kang N.J., J.K. Kwon, H.C. Rhee, H.B. Jeong and H.T. Kim. 2003. Antioxidant enzymes as defense mechanism against oxidative stress induced by chillng in Cucurbita ficifolia leaves. J. Korean Soc. Hort. Sci. 44:605-610 (in Korean).
  9. Kang, N.J., M.W. Cho, H.C. Rhee, Y.H. Choi and Y.C. Um. 2007. Differential responses of antioxidant enzymes on chilling and drought stress in tomato seedlings (Lycopersicon esculentum L.). J. Bio-Environ. Control 16:121-129 (in Korean).
  10. Kang, S.J. 2008. Response of ascorbate peroxidase and dehydroascorbate reductase in lettuce (Lactuca sativa L.) leaves exposed to cold stress. J. Life Sci. 18:1705-1711. https://doi.org/10.5352/JLS.2008.18.12.1705
  11. Kim, J.H, N.K. Sung, S.K. Kwon, P.M. Jung, J.I. Choi, Y.H. Yoon, B.S. Son, T.Y. Yoon, H.J. Kee and J.W. Lee. 2010. Antioxidant activity of stevia leaf extracts prepared by various extraction methods. J. Korean Soc. Food Sci. Nutr. 39:313-318 (in Korean). https://doi.org/10.3746/jkfn.2010.39.2.313
  12. Kim S.J., D.S. Han, K.D. Moon and J.S. Rhee. 1995. Measurement of superoxide dismutase-like activity of natural antioxidants. Biosci. Biotech. Biochem. 59:822-826 (in Korean). https://doi.org/10.1271/bbb.59.822
  13. Kim Y.H. 2005. Engineering approach to crop production in space. J. Bio-Environ. Control. 14:218-231 (in Korean).
  14. Korycka-Dahl M. T., T. Richardson and C.L. Hicks . 1979. Superoxide dismutase activity in bovine milk serum. J. Food Protein 42:867-871. https://doi.org/10.4315/0362-028X-42.11.867
  15. Lee D.H. and C.B. Lee. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159:75-85 (in Korean). https://doi.org/10.1016/S0168-9452(00)00326-5
  16. Lim J.A., Y.S. Na and S.H. Baek. 2004. Antioxidative activity and nitrite scavenging ability of ethanol extract from Phyllostachys bambusoides. Korean J. Food Sci. Technol. 36:306-310 (in Korean).
  17. Marsden S. B. 1958, Antioxidant determinations by the use of a stable free radical. Nature 181:1199-1200. https://doi.org/10.1038/1811199a0
  18. McKersie, B.D., Y.R. Chen, M. de Beus, S.R. Bowler, D. Inze, K. Halluin and J. Botterman. 1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol. 103:1155-1163. https://doi.org/10.1104/pp.103.4.1155
  19. Park G.H and K.M. Kim. 2003. Factors affecting plant regeneration in the culture of different explants of stevia (Stebia rebaudiana Bertoni). Korean J. Plant Biotech. 30: 151-154 (in Korean). https://doi.org/10.5010/JPB.2003.30.2.151
  20. Park S.I. and D.W. Jung. 2005. Effect of green tea powder on the growth inhibition of oral bacteria in yoghurt. Korean J. Soc. Food Sci. Anim. Res. 4:500-506 (in Korean).
  21. Prasad, T.K., M.D. Anderson, B.A. Martin and C.R. Stewart. 1994. Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65-74. https://doi.org/10.1105/tpc.6.1.65
  22. Salin, M.L. 1991. Chloroplast and mitichondrial mechanism for protection against oxygen toxicity. Free Radic. Res. Commun. 12-13:851-858.
  23. Saruyama, H. and M. Tanida. 1995. Effect of chilling on activated oxygen-scavenging enzymes in low temperaturesensitive and tolerant cultivars of rice (Oryza sativa L.). Plant Sci. 109:105-113. https://doi.org/10.1016/0168-9452(95)04156-O
  24. Shen, W., K. Nada and S. Tachibana. 1999. Effect of cold treatment on enzymic and nonenzymic antioxidant activities in leaves of chilling-tolerant and chilling-sensitive cucumber cultivars. J. Japanese Soc. Hort. Sci. 68:967-973. https://doi.org/10.2503/jjshs.68.967
  25. Sim, J.S., J.B. Jeong, J.H. Lee, Y.J. Cha and H.J. Jeong. 2010. Inhibitory effect of the phenolic compounds from apples against oxidative damage and inflammation. Korean J. Plant Res. 23:487-497 (in Korean).
  26. Walker, M.A. and B.D. McKersie. 1993. Role of the ascorbateglutathione antioxidant system in chilling resistance of tomato. J. Plant Physiol. 141:234-239. https://doi.org/10.1016/S0176-1617(11)80766-2
  27. Wang, C.Y. 1996. Temperature preconditioning affects ascorbate antioxidant system in chilled zucchini squash. Postharvest Biol. Technol. 8:29-36. https://doi.org/10.1016/0925-5214(95)00061-5
  28. Wellburn, A.R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoidss, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144:307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
  29. Wise, R., A. W. Naylor. 1987. Chilling enhanced photoxidation. Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidents. Plant Physiol. 83:278-282. https://doi.org/10.1104/pp.83.2.278