DOI QR코드

DOI QR Code

ON AN L-VERSION OF A PEXIDERIZED QUADRATIC FUNCTIONAL INEQUALITY

  • Received : 2011.01.31
  • Accepted : 2011.02.28
  • Published : 2011.03.25

Abstract

Let f, g, h, k : $\mathbb{R}^n{\rightarrow}\mathbb{C}$ be locally integrable functions. We deal with the $L^{\infty}$-version of the Hyers-Ulam stability of the quadratic functional inequality and the Pexiderized quadratic functional inequality $${\parallel}f(x + y) + f(x - y) -2f(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ $${\parallel}f(x + y) + g(x - y) -2h(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ based on the concept of linear functionals on the space of smooth functions with compact support.

Keywords

References

  1. P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27(1984), 76-86. https://doi.org/10.1007/BF02192660
  2. J. Chung, Stability of a generalized quadratic functional equation in Schwartz distributions, Acta Mathematica Sinica, English Series, Vol. 25(2009), 1459-1468. https://doi.org/10.1007/s10114-009-8254-9
  3. J. Chung, Distributional method for a class of functiuonal equations and their stabilities, Acta Math. Sinica 23(2007), 2017-2026. https://doi.org/10.1007/s10114-007-0977-x
  4. J. Chung, Stability of approximately quadratic Schwartz distributions, Nonlinear Analysis 67(2007), 175-186. https://doi.org/10.1016/j.na.2006.05.005
  5. D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. USA 27(1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  6. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables, Birkhauser, 1998.
  7. F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129. https://doi.org/10.1007/BF02924890
  8. S. M. Ulam, Problems in modern mathematics, Chapter VI, Wiley, New York, 1964.