Abstract
This research was done to clarify the cooling effect of water particles generated from a fountain. This effect is a one way to control the heat island effect of big cities. The result of this research was drawn by setting the jets of water in a certain height, and then studying the diffusion of water particles, which is affected by the size of the particles and the wind speed, and the cooling effect caused by the diffusion. 1) When a diameter of a water drop was 500 ${\mu}m$ and the wind speed was 2.0 to 6.0 m/sec, the water drop diffused 75 to 190m, and the water vapor spread over 175 to 440 m. As a result, there was more than $0.5^{\circ}C$ of cooling effect on the temperature in the atmosphere 130 to 330m around the water fountain. 2) When a diameter of a water drop was 750 ${\mu}m$ and the wind speed was 2.0 to 6.0 m/sec, the water drop diffused 65 to 150 m, and the water vapor spread over 160 to 405 m. Moreover, there was more than $0.5^{\circ}C$ of cooling effect on the temperature in the atmosphere 110 to 275 m around the water fountain. 3) After studying on the relationship between the diameter of water drop and the wind speed, and the diffusion of water particles and the range of the atmosphere that was cooled, a result could be drawn from the research that the smaller the diameter of the water vapor gets and the faster the wind speed becomes, the wider the water particles diffuse and the cooler the atmosphere around the fountain becomes. 4) This research further extrapolates that when the ordinary water(tap water, water from river and stream) is used in a fountain, the cooling effect of the air near the fountain can be approached similarly. If the seawater is used in a fountain, there is to be more to concern not only on cooling effect on the air, but also on other effects on surrounding environment generated by the salt in seawater.