DOI QR코드

DOI QR Code

Expression and Purification of the Phosphatase-like Domain of a Voltage-Sensing Phosphatase, Ci-VSP

막 전위 감지 탈인산화 효소, Ci-VSP의 유사 탈인산화 효소 도메인의 발현과 정제

  • Kim, Sung-Jae (Department of Applied Biochemistry, Konkuk University) ;
  • Kim, Hae-Min (Department of Applied Biochemistry, Konkuk University) ;
  • Choi, Hoon (Department of Applied Biochemistry, Konkuk University) ;
  • Kim, Young-Jun (Department of Applied Biochemistry, Konkuk University)
  • 김성재 (건국대학교 응용생화학과) ;
  • 김혜민 (건국대학교 응용생화학과) ;
  • 최훈 (건국대학교 응용생화학과) ;
  • 김영준 (건국대학교 응용생화학과)
  • Received : 2011.05.03
  • Accepted : 2011.06.28
  • Published : 2011.07.30

Abstract

Recently identified Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP) consists of an ion channel-like transmembrane domain (VSD) and a phosphatase-like domain. Ci-VSP senses the change of membrane potential by its VSD and works as a phosphoinositide phosphatase by its phosphatase domain. In this study, we present the construction of His-tagged phosphatase-like domain of Ci-VSP, its recombinant expression and purification, and its enzymatic activity behavior in order to examine the biochemical behavior of phosphatase domain of Ci-VSP without interference. We found that Ci-VSP(248-576)-His can be eluted with an elution buffer containing 25 mM NaCl and 100 mM imidazole during His-tag purification. In addition, we found the proper measurement condition for kinetics study of Ci-VSP(248-576)-His against p-nitrophenyl phosphate (pNPP). We measured the kinetic constant of Ci-VSP(248-576)-His at $37^{\circ}C$, pH 5.0 or 5.5, under 30 min of reaction time, and less than $2.0\;{\mu}g$ of protein amount. With these conditions, we acquired that Ci-VSP(248-576)-His has $K_m$ of $354{\pm}0.143\;{\mu}M$, $V_{max}$ of $0.0607{\pm}0.0137\;{\mu}mol$/min/mg and $k_{cat}$ of $0.359{\pm}0.009751\;min^{-1}$ for pNPP dephosphorylation. Therefore, we produced a pure form of Ci-VSP(248-576)-His, and this showed a higher activity against pNPP. This purified protein will provide the road to a structural investigation on an interesting protein, Ci-VSP.

최근에 Ciona intestinalis에서 확인된 막 전위 감지 탈인산화 효소는 이온 채널과 유사한 막 통과 도메인과 유사 탈인산화 효소 도메인으로 이루어져 있다. 이 Ci-VSP는 그 막 통과 도메인에 의해 막 전위 변화를 감지하고 유사 탈인산화 효소에 의해 인산화된 이노시틸 인지질들에 대한 탈인산화 활성을 보이는 것으로 알려져 있다. 본 연구는 6개의 히스티딘이 융합된 Ci-VSP의 유사 탈인산화 효소 도메인의 발현 시스템 구축을 추구하였다. 그래서 본 논문은 그 시스템의 구축과 발현 그리고 정제 조건 확립, 마지막으로 그 효소 동력학적인 활성을 pNPP에 대한 검토한 결과를 보고한다. 본 연구 결과에 따르면 Ci-VSP(248-576)-His 단백질 발현 및 정제시에 다른 단백질들의 정제 조건과 다르게 25 mM NaCl과 100 mM 정도의 이미다졸이 필요함을 확인하였다. 정제된 단백질을 가지고 탈인산화 효소의 대표적인 기질인 pNPP를 이용하여 그 동력학적인 상수 측정을 시도한 결과 정상 상태 동력학 측정 조건으로 온도 $37^{\circ}C$, pH 5.0 내지 5.5, 반응 시간 30분 이내, 반응 단백질 양 $2.0\;{\mu}g$ 이내가 적합하다는 점을 알게 되었다. 이러한 확립된 조건을 토대로 pNPP에 대한 동력학적 상수를 측정한 결과 $K_m$ 값은 $354{\pm}0.143\;{\mu}M$이며 $V_{max}$$0.0607{\pm}0.0137\;{\mu}mol$/min/mg이며 $k_{cat}$ 값은 $2.359{\pm}0.009751\;min^{-1}$인 것으로 확인되었다. 이를 통해 본 연구는 Ci-VSP(248-576)-His의 순도 높은 정제 결과와 pNPP에 대한 높은 활성 보임을 제시하였다. 이러한 연구 결과를 통해 향후 Ci-VSP에 대한 구조적인 연구 등을 포함하는 다양한 생화학적인 연구가 수행되리라 본다.

Keywords

References

  1. Alabi, A. A., M. I. Bahamonde, H. J. Jung, J. I. Kim, and K. J. Swartz. 2007. Portability of paddle motif function and pharmacology in voltage sensors. Nature 450, 370-375. https://doi.org/10.1038/nature06266
  2. Alonso, A., J. Sasin, N. Bottini, I. Friedberg, I. Friedberg, A. Osterman, A. Godzik, T. Hunter, J. Dixon, and T. Mustelin. 2004. Protein tyrosine phosphatases in the human genome. Cell 117, 699-711. https://doi.org/10.1016/j.cell.2004.05.018
  3. Bradford, M. M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Chen, H., C. Rossier, M. A. Morris, H. S. Scott, A. Gos, A. Bairoch, and S. E. Antonarakis. 1999. A testis-specific gene, TPTE, encodes a putative transmembrane tyrosine phosphatase and maps to the pericentromeric region of human chromosomes 21 and 13, and to chromosomes 15, 22, and Y. Hum. Genet. 105, 399-409. https://doi.org/10.1007/s004390051122
  5. Halaszovich, C. R., D. N. Schreiber, and D. Oliver. 2009. Ci-VSP is a depolarization-activated phosphatidylinositol- 4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate 5'-phosphatase. J. Biol. Chem. 284, 2106-21013. https://doi.org/10.1074/jbc.M803543200
  6. Hessa, T., S. H. White, and G. von Heijne. 2005. Membrane insertion of a potassium-channel voltage sensor. Science 307, 1427. https://doi.org/10.1126/science.1109176
  7. Horn, R. 2005. Electrifying phosphatases. Sci. STKE 2005, pe50.
  8. Hossain, M. I., H. Iwasaki, Y. Okochi, M. Chahine, S. Higashijima, K. Nagayama, and Y. Okamura. 2008. Enzyme domain affects the movement of the voltage sensor in ascidian and zebrafish voltage-sensing phosphatases. J. Biol. Chem. 283, 18248-18259. https://doi.org/10.1074/jbc.M706184200
  9. Iwasaki, H., Y. Murata, Y. Kim, M. I. Hossain, C. A. Worby, J. E. Dixon, T. McCormack, T. Sasaki, and Y. Okamura. 2008. A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate. Proc. Natl. Acad. Sci. USA 105, 7970-7975. https://doi.org/10.1073/pnas.0803936105
  10. Kohout, S. C., M. H. Ulbrich, S. C. Bell, and E. Y. Isacoff. 2008. Subunit organization and functional transitions in Ci-VSP. Nat. Struct. Mol. Biol. 15, 106-108. https://doi.org/10.1038/nsmb1320
  11. Kohout, S. C., S. C. Bell, L. Liu, Q. Xu, D. L. Jr Minor, and E. Y. Isacoff. 2010. Electrochemical coupling in the voltage- dependent phosphatase Ci-VSP. Nat. Chem. Biol. 6, 369-375. https://doi.org/10.1038/nchembio.349
  12. Lundby, A, H. Mutoh, D. Dimitrov, W. Akemann, and T. Knöpfel. 2008. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One 3, 2514. https://doi.org/10.1371/journal.pone.0002514
  13. Lundby, A, W. Akemann, and T. Knopfel. 2010. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP. Eur. Biophys. J. 39, 1625-1635. https://doi.org/10.1007/s00249-010-0620-0
  14. Maehama, T., G. S. Taylor, and J. E. Dixon. PTEN and myotubularin: novel phosphoinositide phosphatases. 2001. Annu. Rev. Biochem. 70, 247-279. https://doi.org/10.1146/annurev.biochem.70.1.247
  15. Mourey, R. J. and J. E. Dixon. 1994. Protein tyrosine phosphatases: characterization of extracellular and intracellular domains. Curr. Opin. Genet. Dev. 4, 31-39. https://doi.org/10.1016/0959-437X(94)90088-4
  16. Murata, Y. and Y. Okamura. 2007. Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. J. Physiol. 583, 875-889. https://doi.org/10.1113/jphysiol.2007.134775
  17. Murata, Y., H. Iwasaki, M. Sasaki, K. Inaba, and Y. Okamura. 2005. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239-1243. https://doi.org/10.1038/nature03650
  18. Mutoh, H., A. Perron, D. Dimitrov, Y. Iwamoto, W. Akemann, D. M. Chudakov, and T. Knöpfel. 2009. Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS One 4, 4555. https://doi.org/10.1371/journal.pone.0004555
  19. Ogasawara, M., M. Sasaki, N. Nakazawa, A. Nishino, and Y. Okamura. 2011. Gene expression profile of Ci-VSP in juveniles and adult blood cells of ascidian. Gene Expr. Patterns 11, 233-238. https://doi.org/10.1016/j.gep.2010.12.004
  20. Ramsey, I. S., M. M. Moran, J. A. Chong, and D. E. Clapham. 2006. A voltage-gated proton-selective channel lacking the pore domain. Nature. 440, 1213-1216. https://doi.org/10.1038/nature04700
  21. Sakata, S., M. I. Hossain, and Y. Okamura. 2011. Coupling of the phosphatase activity of Ci-VSP to its voltage sensor activity over the entire range of voltage sensitivity. J. Physiol. Apr. 4 [Epub ahead of print].
  22. Sasaki, M., M. Takagi, and Y. Okamura. 2006. A voltage sensor domain protein is a voltage-gated proton channel. Science 312, 589-592. https://doi.org/10.1126/science.1122352
  23. Tapparel, C., A. Reymond, C. Girardet, L. Guillou, R. Lyle, C. Lamon, P. Hutter, and S. E. Antonarakis. 2003. The TPTE gene family: cellular expression, subcellular localization and alternative splicing. Gene 323, 189-199. https://doi.org/10.1016/j.gene.2003.09.038
  24. Villalba-Galea, C. A., F. Miceli, M. Taglialatela, and F. Bezanilla 2009. Coupling between the voltage-sensing and phosphatase domains of Ci-VSP. J. Gen. Physiol. 134, 5-14. https://doi.org/10.1085/jgp.200910215
  25. Villalba-Galea, C. A., W. Sandtner, D. Dimitrov, H. Mutoh, T. Knopfel, and F. Bezanilla. 2009. Charge movement of a voltage-sensitive fluorescent protein. Biophys. J. 96, 19-21.
  26. Villalba-Galea, C. A., W. Sandtner, D. M. Starace, and F. Bezanilla. 2008. S4-based voltage sensors have three major conformations. Proc. Natl. Acad. Sci. USA 105, 17600-17607. https://doi.org/10.1073/pnas.0807387105
  27. Walker, S. M., C. P. Downes, and N. R. Leslie. 2001. TPIP: a novel phosphoinositide 3-phosphatase. Biochem. J. 360, 277-283. https://doi.org/10.1042/0264-6021:3600277
  28. Worby, C. A. and J. E. Dixon. 2005. Phosphoinositide phosphatases: emerging roles as voltage sensors? Mol. Interv. 5, 274-277. https://doi.org/10.1124/mi.5.5.5
  29. Zhang, Y., Y. Kim, N. Genoud, J. Gao, J. W. Kelly, S. L. Pfaff, G. N. Gill, J. E. Dixon, and J. P. Noel. 2006. Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Mol. Cell. 24, 759-770. https://doi.org/10.1016/j.molcel.2006.10.027