DOI QR코드

DOI QR Code

규칙적 운동이 고지방식이 난소절제흰쥐의 지방세포에서 미토콘드리아 생합성 유전자들의 변화

Change of Mitochondrial Biogenesis Genes on Regular Exercise Training in Adipocytes of Ovariectomized Rats Fed on High Fat Diet

  • 이진 (한양대학교 해부세포생물학교실)
  • Lee, Jin (Department of Anatomy and Cell Biology, Collage of Medicine, Han-Yang University)
  • 투고 : 2011.04.06
  • 심사 : 2011.05.18
  • 발행 : 2011.07.30

초록

폐경과 비만은 여러 대사증후군과 관련되어 있다. 이에 본 연구는 난소절제로 폐경을 유도한 흰쥐에게 고지방식이로 비만을 유도하여 이들 지방세포에서 발현되는 PPAR${\gamma}$, PGC-$1{\alpha}$, -$1{\beta}$, NRf-1, TFAM 유전자들의 변화를 조사하고 6주간의 규칙적인 운동을 하여 그 차이에 따른 효과를 규명하는데 목적을 두고 조사하였다. 본 실험에서 사용한 암컷흰쥐는 3그룹으로 다음과 같이 구분하였다. (1) 일반식이군(C group, n=4), (2) 고지방식이 군(H group, n=4), (3) 고지방식이와 운동군(H+EX group, n=4)으로 나누었다. 규칙적인 운동은 수영운동을 하였으며, 방법은 주 5회, 총 6주간 점진적 시간증가로 수행하였다. 그 결과, 지방조직의 무게는 H 그룹에서 유의하게 높게 (p<0.01) 나타났으나 규칙적인 운동그룹은 확실히 감소되었다. 또한 규칙적인 운동은 PPAR-${\gamma}$ (p<0.05), PGC-$1{\alpha}$ (p<0.01), -$1{\beta}$ (p<0.05), NRf-1 (p<0.01), TFAM (p<0.05)의 유전자들은 모두 유의하게 증가시켰다. 이상의 결과를 종합하면 6주간의 규칙적인 수영운동은 지방세포 내 PPAR-${\gamma}$, PGC-$1{\alpha}$, -$1{\beta}$, NRf-1, TFAM의 mRNA 발현 증가와 미토콘드리아의 수 증가에 영향을 미친 것으로 추측된다. 따라서 규칙적인 운동은 폐경기 비만으로 비대해진 피하지방을 감소시키고 지방세포 내 미토콘드리아의 생합성기능을 개선시켜 미토콘드리아 수 감소를 개선할 수 있을 것으로 생각된다.

Menopause and obesity are associated with metabolism. The purpose of this study was to examine the changes of PPAR${\gamma}$, PGC-1(${\alpha},\;{\beta}$), NRf-1 and TFAM mRNA and mitochondria biogenesis in adipocytes and investigate the effect of swimming exercise for 6weeks on ovariectomized rats. Rats were randomly assigned to 3 groups: (1) ovariectomized rats fed with a control diet (C, n=4), (2) ovariectomized rats fed with high fat diet (H, n=4), and (3) ovariectomized rats trained to exercise and fed with high fat diet (H+EX, n=4). Exercise was performed by swimming for 5 days/wk, with a progressive increase in exercise over the course of 6 weeks. Results showed that the fat tissue weight in the H group was markedly increased (p<0.01) compared to other groups, however, regular exercise significantly decreased fat weight. The PPAR-${\gamma}$ (p<0.05), PGC-$1{\alpha}$ (p<0.01), -$1{\beta}$ (p<0.05), NRf-1 (p<0.01) and TFAM (p<0.05) mRNA expression in the adipocytes of H+EX were higher than in the H group. These results suggest that regular exercise for 6 weeks might exert positive effects by increasing PPAR-${\gamma}$, PGC-1 (${\alpha},\;{\beta}$), NRf-1 and TFAM mRNA expression and mitochondria in adipocytes. Thus, regular exercise may be helpful in the improvement of mitochondria biogenesis function in obese, ovariectomized rats.

키워드

참고문헌

  1. Baar, K., A. R. Wende, T. E. Jonesm, M. Marison, L. A. Nolte, M. Chen, D. P. Kelly, and J. O. Holloszy. 2002. Adaptations of skeletal muscle to exercise: rapid increase in the transcripotional coactivator PGC-1. FASEB 16, 1879-1886. https://doi.org/10.1096/fj.02-0367com
  2. Baar, K. 2004. Involvement of PPARγ co-activator -1, nuclear respiratory factors 1 and 2, and PPARα in the adaptive response to endurance exercise. Proc. Nutr. Soc. 63, 269-273. https://doi.org/10.1079/PNS2004334
  3. Baker. M. A. and S. M. Horvath. 1946. Influence of water temperature on oxygen uptake by swimming rats. J. Appl. Physiol. 19, 1215-1218.
  4. Bray, G. A. 2004. Medical consequences of obesity. J. Clin. Endocrinol. Metab. 89, 2583-2589. https://doi.org/10.1210/jc.2004-0535
  5. Bournat, J. C. and C. W. Brown. 2010. Mitochondrial dysfunction in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 17, 446-452. https://doi.org/10.1097/MED.0b013e32833c3026
  6. Choo, H. J., J. H. Kim, C. S. Kwon, J. Y. Lee, S. S. Han, G. Yoon, K. M. Choi, and Y. G. Ko. 2006. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49, 784-791. https://doi.org/10.1007/s00125-006-0170-2
  7. Civitarese, A. E., S. R. Smith, and E. Ravussin. 2007. Diet, energy metabolism and mitochondrial biogenesis. Curr. Opin. Clin. Nutr. Metab. Care 10, 679-687. https://doi.org/10.1097/MCO.0b013e3282f0ecd2
  8. Endo, N., C. Emilio, M. Salvador, and O. C. Michele. 2004. Mitochondrial biogenesis as a cellular signaling framework. Biochem. Pharmacol. 67, 1-15. https://doi.org/10.1016/j.bcp.2003.10.015
  9. Fasshauer, M. and R. Paschke. 2000. Regulation of adipocytokines and insulin resistance. Diabetologia 46, 1594-1603.
  10. Ferre, P. 2004. The biology of peroxisome proliferator activated receptors: ralationship with lipid metabolism and insulin sensitivity. Diabetes 53, S43-50. https://doi.org/10.2337/diabetes.53.2007.S43
  11. Finck, B. N. and D. P. Kelly. 2007. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 115, 2540-2548. https://doi.org/10.1161/CIRCULATIONAHA.107.670588
  12. Gao, C. L., C. Zhu, Y. P. Zhao, X. H. Chen, C. B. Ji, C. M. Zhang, J. G. Zhu, Z. K. Xia, M. L. Tong, and X. R. Guo. 2010. Mitochondria dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol. Cell Endocrinol. 320, 25-33. https://doi.org/10.1016/j.mce.2010.01.039
  13. Gomez-Ruiz, A., F. I. Milagro, J. Campion, J. A. Martinez, and C. de Miguel. 2010. Caveoiln expression and activation in retroperitoneal and subcutaneous adipocytes : influence of a high-fat diet. J. Cell Physiol. 225, 206-213. https://doi.org/10.1002/jcp.22241
  14. Guikherme, A., J. V. Virbasius, V. Puri, and M. P. Czech. 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367-377. https://doi.org/10.1038/nrm2391
  15. Haddock, B. L., H. P. Hopp, J. J. Mason, and G. Blix. 2000. The effect of hormone replacement therapy and exercise on cardiovascular disease risk factors in postmenopausal women. Sports Medicine 29, 39-49. https://doi.org/10.2165/00007256-200029010-00004
  16. Hagey, A. R. and M. P. Warren. 2008. Role of exercise and nutrition in menopause. Clin. Obestet. Gynecol. 51, 627-641. https://doi.org/10.1097/GRF.0b013e318180ba84
  17. Hargrave, K. M., B. J. Meyer, C. Li, M. J. Azain, C. A. Baile, and J. L. Miner. 2004. Influence of dietary conjugated linoleic Acid and fat source on body fat and apoptosis in mice. Obes. Res. 12, 1435-1444. https://doi.org/10.1038/oby.2004.180
  18. Irrcher, I., P. J. Adhihetty, T. Sheehan, A. M. Joesph, and D. A. Hood. 2003. PPARgamma coactivator-1alpha expression during thyroid hormone and contractile activity-induced mitochondrial adaptations. Am. J. Physiol. Cell Physiol. 284, C1669-C1677. https://doi.org/10.1152/ajpcell.00409.2002
  19. Johannsen, D. L., L. M. Redman, and E. Ravussin. 2007. The role of physical activity in maintaining a reduced weight. Curr. Atheroscler. Rep. 9, 463-471. https://doi.org/10.1007/s11883-007-0062-z
  20. Kang, D., S. H. Kim, and N. Hamasaki. 2007. Mitochondrial transcription factor A (TFAM): role in maintenance of mtDNA and cellular functions. Mitochdrion 7, 39-44. https://doi.org/10.1016/j.mito.2006.11.017
  21. Kissebah, A. H. and G. R. Krakower. 1994. Regional adiposity and morbidity. Physiol. Rev. 74, 761-811.
  22. Liu, C., S. Li, T. Liu, J. Borjigin, and J. D. Lin. 2007. Transcriptional coactivator PGC-1α interates the mammalian clock and energy metabolism. Nature 447, 477-481. https://doi.org/10.1038/nature05767
  23. Melton, S. A., M. Hegsted, M. J. Keenan, Y. Zhang, S. Morris, B. L. Potter, C. E. O'Neil, and G. S. Morris. 2000. Swimming eliminates the weight gain and abdominal fat associated with ovariectomy in the retired breeder rat despite high-fat diet selection. Appetite 35, 1-7. https://doi.org/10.1006/appe.2000.0338
  24. Mogensen, M., K. Sahlin, M. Fernstroὂm, D. Glintborg, B. F. Vind, H. Beck-Nielsen, and K. Højlund. 2007. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56, 1592-1599. https://doi.org/10.2337/db06-0981
  25. Park, H., V. K. Kaushik, S. Constant, M. Prentki, E. Przybytkowski, N. B. Ruderman, and A. K. Saha. 2002. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J. Biol. Chem. 6, 277, 32571-32577. https://doi.org/10.1074/jbc.M201692200
  26. Pasquali, R., F. Casimirri, A. M. Labate, O. Tortelli, G. Pascal, B. Anconetani, M. R. Gatto, R. Flamia, M. Capelli, and L. Barbara. 1994. Body weight, fat distribution and the menopausal status in women. The VMH Collaborative Group. Int. Obes. Relat. Metab. Disord. 18, 614-621.
  27. Richard, D. 1986. Effects of ovarian hormones on energy blance and brown adipose tissue thermogenesis. Am. J. Physiol. Regul. Interative. Comp. Physiol. 250, R245-249.
  28. Rodgers, J. T., C. Lerin, W. Haas, S. P. Gygi, B. M. Spiegelman, and P. Puigserver. 2005. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 1123-118.
  29. Puigserver, P. and B. M. Spiegelman. 2003. Peroxisome proliferator-activated receptor-$\gamma$ coactivator and metabolic regulator. Endorc. Rev. 24, 78-90. https://doi.org/10.1210/er.2002-0012
  30. Semple, R. K., V. C. Crowley, C. P. Sewter, M. Laudes, C. Christodoulides, R. V. Considine, A. Vidal-Puig, and S. O'Rahilly. 2004. Expression of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects. Int. J. Obes. Relat. Metab. Disord. 28, 176-179. https://doi.org/10.1038/sj.ijo.0802482
  31. Stempeer, M. 2006. Supplements aren't the secret to health. Newsweek 147, 87-88.
  32. Suarez, J., Y. Hu, A. Makino, E. Fricovsky, H. Wang, and W. H. Dillmann. 2008. Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. Am. J. Physiol. Cell. Physiol. 295, C1561-1568. https://doi.org/10.1152/ajpcell.00076.2008
  33. Vina, J., M. C. Gomez-Cabrera, C. Borras, T. Froio, F. Sanchis-Gomar, V. E. Martinez-Bello, and F. V. Pallardo. 2009. Mitochondrial biogenesis in exercise and in ageing. Adv. Drug. Delivery Rev. 61, 1369-1374. https://doi.org/10.1016/j.addr.2009.06.006
  34. Yan, Z., M. Okutsu., Y. N. Akhtar, and V. A. Lira. 2011. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J. Appl. Physiol. 220, 264-274.