DOI QR코드

DOI QR Code

Multiplex PCR 기법을 이용한 보통사마귀 내 인유두종바이러스 검출 및 분류

Detection and Typing of Human Papillomavirus in Cutaneous Common Warts by Multiplex Polymerase Chain Reaction

  • 최순용 (한남대학교 생명.나노과학대학 생명공학과) ;
  • 임종호 (가톨릭대학교 의과대학 피부과학교실) ;
  • 김은정 (가톨릭대학교 의과대학 피부과학교실) ;
  • 김혜성 (가톨릭대학교 의과대학 피부과학교실) ;
  • 김범준 (중앙대학교 의과대학 피부과학교실) ;
  • 강훈 (가톨릭대학교 의과대학 피부과학교실) ;
  • 박영민 (가톨릭대학교 의과대학 피부과학교실)
  • Choi, Soon-Yong (Department of Biotechnology, College of Life Science & Nanotechnology, Hannam University) ;
  • Lim, Jong-Ho (Department of Dermatology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Eun-Jung (Department of Dermatology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Hei-Sung (Department of Dermatology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Beom-Joon (Department of Dermatology, College of Medicine, Chung-Ang University) ;
  • Kang, Hoon (Department of Dermatology, College of Medicine, The Catholic University of Korea) ;
  • Park, Young-Min (Department of Dermatology, College of Medicine, The Catholic University of Korea)
  • 투고 : 2011.05.09
  • 심사 : 2011.06.30
  • 발행 : 2011.07.30

초록

현재까지 다수의 역학연구를 통해 피부에 발생한 보통사마귀에서 제 1, 2, 3, 4, 7, 10, 27, 57 및 65형의 인유두종바이러스가 검출되었다. 그러나 기존의 중합효소연쇄반응(conventional polymerase chain reaction, PCR)을 이용하는 경우 절차가 복잡하여 시간이 오래 걸리는 단점이 있었다. 이번 연구를 통해 저자들은 보통사마귀에서 가장 흔히 검출되는 6가지 유전자형의 인유두종바이러스를 한번에 확인 가능한 간편한 muliplex PCR의 개발을 목표로 하였다. 인유두종바이러스의 염기서열분석을 통해, L1에서 E6, 그리고 E2에서 L2 사이의 유전자간영역(intergenic region)으로 부터 6쌍의 primer를 고안하였으며, L1 유전자서열 분석을 통해 multiplex PCR의 특이성을 확인하였다. 총 129개의 조직표본 중 109개에서 제 1, 2, 3, 4, 27, 57형의 인유두종바이러스를 확인하였다. 이번 연구의 primer를 이용한 인유두종바이러스 검출의 민감도와 특이도는 각각 85%와 99.5%였다. 이러한 primer 세트로 인유두종바이러스가 검출되지 않은 20개의 조직표본의 경우, 또 다른 HPV primer를 사용한 추가적인 multiplex PCR을 시행하여 7개 표본에서 제 7형 및 65형의 인유두종바이러스가 검출되었다. 이상의 결과는 본 연구를 통해 새롭게 고안된 multiplex PCR 기법을 통해 보통사마귀에서의 인유두종바이러스를 보다 정확하고 빠르게 검출할 수 있다는 것을 보여 준다.

A number of epidemiological studies have identified human papillomavirus (HPV) types 1, 2, 3, 4, 7, 10, 27, 57, and 65 in cutaneous common warts. However, identification of the HPV subtype by conventional polymerase chain reaction (PCR) is time consuming with its multi-step laboratory process. In this study, we aim to develop a specific one-step multiplex polymerase chain reaction method which capably identifies six different HPV genotypes related to common warts. By HPV DNA sequence analysis, 6 pairs of specific primers were designed from the intergenic regions of genes L1 to E6, and from genes E2 to L2. DNA sequence analysis with the L1 gene sequence of the sample was performed to measure the specificity of multiplex PCR. HPV-1, -2, -3, -4, -27, and -57 were identified without cross amplification in 109 out of 129 samples. The sensitivity and specificity of our set of primers in detecting HPV were 85% and 99.5%, respectively. For the 20 samples where HPV type was not identifiable by our batch of primer sets, multiplex PCR with an additional set of HPV primers was done, where 7 were found positive for HPV-7 or -65. Our results demonstrate that the newly designed multiplex PCR can rapidly detect the specific HPV subtype involved in common warts with high accuracy.

키워드

참고문헌

  1. Bernard, H. U., I. E. Calleja-Macias, and S. T. Dunn. 2006. Genome variation of human papillomavirus types: Phylogenetic and medical implications. Int. J. Cancer 118, 1071-1076. https://doi.org/10.1002/ijc.21655
  2. Burhart, C. G. 2004. The endogenous, exogenous, and latent infections with human papillomavirus. Int. J. Dermatol. 43, 548-549. https://doi.org/10.1111/j.1365-4632.2004.02300.x
  3. Chen, S. L., Y. P. Tsao, J. W. Lee, W. C. Sheu, and Y. T. Liu. 1993. Characterization and analysis of human papillomaviruses of skin warts. Arch. Dermatol. Res. 285, 460-465. https://doi.org/10.1007/BF00376818
  4. de Villiers, E. M. 1994. Human pathogenic papillomavirus types: an update. Curr. Top. Microbiol. Immunol. 186, 1-12.
  5. de Villiers, E. M., C. Fauquet, T. R. Broker, H. U. Bernard, and H. zur Hausen. 2004. Classification of papillomaviruses. Virology 324, 17-27. https://doi.org/10.1016/j.virol.2004.03.033
  6. Doorbar, J. 2006. Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci. 110, 525-541. https://doi.org/10.1042/CS20050369
  7. Forslund, O., A. Antonsson, P. Nordin, B. Stenquist, and B. G. Hansson. 1999. A broad range of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumors and normal skin. J. Gen. Virol. 80, 2437-2443.
  8. Gravitt, P. E., C. L. Pryton, T. Q. Alessi, C. M. Wheeler, F. Coutlée, A. Hildesheim, M. H. Schiffman, D. R. Scott, and R. J. Apple. 2000. Improved amplification of genital human papillomavirus. J. Clin. Microbiol. 38, 357-361.
  9. Hagiwara, K., H. Uezato, H. Arakaki, S. Nonaka, K. Nonaka, H. Nonaka, T. Asato, M. Oshiro, K. Kariya, and A. Hattori. 2005. A genotype distribution of human papillomaviruses detected by polymerase chain reaction and direct sequencing analysis in a large sample of common warts in Japan. J. Med. Virol. 77, 107-112. https://doi.org/10.1002/jmv.20421
  10. Handisurya, A., C. Schellenbacher, and R. Kirnbauer. 2009. Diseases caused by human papillomaviruses (HPV). J. German Soc. Dermatol. 7, 453-466.
  11. Iftner, A., S. J. Klug, C. Garbe, A. Blum, A. Stancu, S. P. Wilczynski, and T. Iftner. 2003. The prevalence of human papillomavirus genotypes in nonmelanoma skin cancers of nonimmunosuppressed individuals identifies high-risk genital types as possible risk factors. Cancer Res. 63, 7515-7519.
  12. Kwon, J., K. S. Park, S. W. Park, and S. Y. Choi. 1998. Construction of PCR cloning T-vector for the direct selection with green fluorescent protein. BioTechniques 25, 192-196.
  13. Lei, Y. J., C. Gao, Q. Shi, J. M. Chen, Y. K. Yuan, C. Wang, J. Han, and X. P. Dong. 2008. Development of a multiplex PCR method for detecting and typing human papillomaviruses in verrucae vulgaris. J. Virol. Methods 147, 72-77. https://doi.org/10.1016/j.jviromet.2007.08.005
  14. Longworth, M. S. and L. A. Laimins. 2004. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol. Mol. Biol. Rev. 68, 362-372. https://doi.org/10.1128/MMBR.68.2.362-372.2004
  15. Munoz, N., F. X. Bosch, S. de Sanjose, R. Herrero, X. Castellsagué, K. V. Shah, P. J. Snijders, and C. J. Meijer. International Agency for Research on Cancer Multicenter Cervical Cancer Study Group. 2003. Epidermiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 348, 518-527. https://doi.org/10.1056/NEJMoa021641
  16. Qu, W., G. Jiang, Y. Cruz, C. J. Chang, G. Y. Ho, R. S. Klein, and R. D. Burk. 1997. PCR detection of human papillomavirus: comparison between MY09/MY1 and GP5+/GP6+ primer systems. J. Clin. Microbiol. 36, 1304-1310.
  17. Sanclemente, G. and D. K. Gill. 2002. Human papillomavirus molecular biology and pathogenesis. J. Eur. Acad. Dermatol. Venereol. 16, 231-240. https://doi.org/10.1046/j.1473-2165.2002.00419.x
  18. Snijders, P. J., A. J. van den Brule, M. V. Jacobs, R. P. Pol, and C. J. Meijer. 2005. HPV DNA detection and typing in cervical scrapes. Methods Mol. Med. 119, 101-114.
  19. Snijders, P. J., A. J. van den Brule, H. F. Schrijnemakers, G. Snow, C. J. Meijer, and J. M. Walboomers. 1990. The use of general primers in the polymerase chain reaction permits the detection of broad spectrum of human papillomavirus genotypes. J. Gen. Virol. 71, 173-181. https://doi.org/10.1099/0022-1317-71-1-173
  20. Surentheran, T., C. A. Harwood, P. J. Spink, A. L. Sinclair, I. M. Leigh, C. M. Proby, J. M. McGregor, and J. Breuer. 1998. Detection and typing of human papillomaviruses in mucosal and cutaneous biopsies from immunosuppressed and immunocompetent patients and patients with epidermodysplasia verruciformis: a uified diagnostic approach. J. Clin. Pathol. 51, 606-610. https://doi.org/10.1136/jcp.51.8.606