DOI QR코드

DOI QR Code

Antihyperlipidemic Effect of Ginsenoside Rg1 in Type 2 Diabetic Mice

제2형 당뇨병 모델 마우스에서 ginsenoside Rg1의 항당뇨 효과

  • Park, Jae-Hong (School of Korean Medicine, Pusan National University) ;
  • Lee, Ji-Youn (School of Korean Medicine, Pusan National University) ;
  • Yeo, Ji-Young (School of Korean Medicine, Pusan National University) ;
  • Nam, Jeong-Su (School of Korean Medicine, Pusan National University) ;
  • Jung, Myeong-Ho (School of Korean Medicine, Pusan National University)
  • 박재홍 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 이지연 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 여지영 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 남정수 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 정명호 (부산대학교 한의학전문대학원 양생기능의학부)
  • Received : 2011.04.14
  • Accepted : 2011.05.13
  • Published : 2011.07.30

Abstract

Ginsenoside Rg1 is a pharmacologically active component isolated from ginseng. The goal of this study was to clarify the beneficial effects of Rg1 on glucose and lipid metabolism in diabetic animals (db/db mice). To accomplish this, ten week old db/db mice were administered 10 mg/kg of Rg1 for 15 days. Rg1 did not influence the weight of db/db mice when compared with vehicle-treated db/db mice. The administration of Rg1 lowered fasting plasma glucose, and improved glucose tolerance. Importantly, Rg1 markedly reduced both plasma triglyceride and free fatty acids, and increased high-density lipoprotein cholesterol (HDL-C) concentrations in db/db mice. Rg1 activated promoter activity of chimeric GAL4-PPAR${\alpha}$ reporter and increased expression of peroxisome proliferator-activated receptor alpha (PPAR${\alpha}$) target genes such as carnitine palmitoyltransferase-1 (CPT-1) and acyl-CoA oxidase (ACO), which are involved in fatty acid oxidation. These findings indicated that improvement of lipid profiles by Rg1 may be associated with increased fatty acid oxidation via PPAR${\alpha}$ activation. Taken together, these results suggest that Rg1 could have beneficial effects for controlling hyperglycemia and hyperlipidemia associated with type 2 diabetes.

Ginsenoside Rg1은 인삼에서 분리한 약물학적인 활성을 가지는 물질이다. 본 연구는 Rg1이 제2형 당뇨병 모델 동물에서 혈당과 지질대사에 유익한 효과를 가지는지를 확인하기 위한 목적으로 수행되었다. 10주령의 db/db 마우스에 Rg1을 10 mg/kg 농도로 15일간 경구투여한 결과 공복혈당이 감소하였고, 포도당 내성이 개선되었다. 특히 혈중 중성지방과 유리지방산이 유의적으로 감소하였고 혈중 HDL-콜레스테롤이 증가되었다. 또한 chimeric GAL4-PPAR${\alpha}$ receptor 활성 프로모터를 활성화시켰고 PPAR${\alpha}$ gene인 CPT-1 (carnitine palmitoyltransferase-1)과 ACO (acyl-CoA oxidase)의 발현을 증가시켰는데 이것으로 Rg1의 지질대사 개선이 PPAR${\alpha}$ 활성에 의한 지방산 산화에 의한 것임을 확인할 수 있었다. 모든 결과를 종합해 볼 때, Rg1은 제2형 당뇨병과 관련된 고혈당증과 고지혈증에 유용한 효과를 가짐을 확인하였다.

Keywords

References

  1. Aasum, E., A. D. Hafstad, D. L. Severson, and T. S. Larsen. 2003. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 52, 434-441. https://doi.org/10.2337/diabetes.52.2.434
  2. American Institute of Nutrition. 1980. Report of Ad Hoc committee on standards for nutritional studies. J. Nutr. 110, 1717-1726.
  3. American Institute of Nutrition. 1977. Report of the American institute of nutrition ad hoc committee on standards for nutritional studies. J. Nutr. 107, 1340-1348.
  4. Andallu, B., A. V. Vinay Kumar, and NCh. Varadacharyulu. 2009. Lipid abnormalities in streptozotocin-diabetes: Amelioration by Morus indica L. cv Suguna leaves. Int. J. Diabetes Dev. Ctries. 29, 123-128. https://doi.org/10.4103/0973-3930.54289
  5. Anhauser, M. 2003. Pharmacists seek the solution of a shaman. Drug Discov. Today 8, 868-869. https://doi.org/10.1016/S1359-6446(03)02856-3
  6. Atta, Ur R. and K. Zaman. 1989. Medicinal plants with hypoglycemic activity. J. Ethnopharmacol. 26, 1-55. https://doi.org/10.1016/0378-8741(89)90112-8
  7. Chen, X., X. Bai, Y. Liu, L. Tian, J. Zhou, Q. Zhou, J. Fang, and J. Chenl. 2009. Anti-diabetic effects of water extract and crude polysaccharides from tuberous root of Liriope spicata var. prolifera in mice. J. Ethnopharmacol. 122, 205-209. https://doi.org/10.1016/j.jep.2009.01.016
  8. Cheng, Y., L. H. Shen, and J. T. Zhang. 2005. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta. Pharmacol. Sin. 26, 143-149. https://doi.org/10.1111/j.1745-7254.2005.00034.x
  9. DeFronzo, R. A. 1999. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med. 131, 281-303. https://doi.org/10.7326/0003-4819-131-4-199908170-00008
  10. De Sotillo, D. V. R. and M. Hadley. 2002. Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J. Nutr. Biochem. 13, 717-726. https://doi.org/10.1016/S0955-2863(02)00231-0
  11. Gaster, B. and I. B. Hirsch. 1998. The effects of improved glycemic control on complications in type 2 diabetes. Arch. Intern. Med. 158, 134-140. https://doi.org/10.1001/archinte.158.2.134
  12. Hanefeld, M. and T. Temelkova-Kurktschiev. 2002. Control of post-prandial hyperglycemia- an essential part of good diabetes treatment and prevention of cardiovascular complications. Nutr. Metab. Cardiovasc. Dis. 12, 98-107.
  13. Hou, J. P. 1977. The chemical constituents of ginseng plants. Comp. Med. East West 5, 123-145. https://doi.org/10.1142/S0147291777000209
  14. Jang, Y. J., J. K. Kim, M. S. Lee, I. H. Ham, W. K. Whang, K. H. Kim, and H. J. Kim. 2001. Hypoglycemic and hypolipidemic effects of crude saponin fractions from Panax ginseng and gynostemma pentaphyllum. Yakhak Hoechi 45, 545-556.
  15. Kim, M. J., K. H. Leem, and H. K. Kim. 2009. Hydrangea dulcis folium preserves b-cell mass in diabetic db/db mice. Food Chem. Toxicol. 47, 1685-1688. https://doi.org/10.1016/j.fct.2009.04.015
  16. Kim, S. J., H. D. Yuan, and S. H. Chung. 2010. Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells. Biol. Pharm. Bull. 33, 325-328. https://doi.org/10.1248/bpb.33.325
  17. Lee, S. M., H. J. Shon, C. S. Choi, T. M. Hung, B. S. Min, and K. Bae. 2009. Ginsenosides from heat processed ginseng. Chem. Pharm. Bull. (Tokyo) 57, 92-94. https://doi.org/10.1248/cpb.57.92
  18. Liu, G., B. Wang, J. Zhang, H. Jiang, and F. Liu. 2009. Total panax notoginsenosides prevent atherosclerosis in apolipoprotein E-knockout mice: Role of downregulation of CD40 and MMP-9 expression. J. Ethnopharmacol. 126, 350-354. https://doi.org/10.1016/j.jep.2009.08.014
  19. Ng, T. B. 2006. Pharmacological activity of sanchi ginseng (Panax notoginseng). J. Pharm. Pharmacol. 58, 1007-1019. https://doi.org/10.1211/jpp.58.8.0001
  20. Nishijo, H., T. Uwano, Y. M. Zhong, and T. Ono. 2004. Proof of the mysterious efficacy of ginseng: basic and clinical trials: effects of red ginseng on learning and memory deficits in an animal model of amnesia. J. Pharmacol. Sci. 95, 145-152. https://doi.org/10.1254/jphs.FMJ04001X3
  21. Rosenbloom, A. L., J. R. Joe, R. S. Young, and W. E. Winter. 1999. Emerging epidemic of type 2 diabetes in youth. Diabetes Care 22, 345-354. https://doi.org/10.2337/diacare.22.2.345
  22. Sugimoto, S., S. Nakamura, H. Matsuda, N. Kitagawa, and M. Yoshikawa. 2009. Chemical constituents from seeds of Panax ginseng: structure of new dammarane-type triterpene ketone, panaxadione, and HPLC comparisons of seeds and flesh. Chem. Pharm. Bull. 57, 283-287. https://doi.org/10.1248/cpb.57.283
  23. Tawab, M. A., U. Bahr, M. Karas, M. Wurglics, and M. Schubert-Zsilavecz. 2003. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31, 1065-1071. https://doi.org/10.1124/dmd.31.8.1065
  24. Tohda, C., N. Matsumoto, K. Zou, M. R. Meselhy, and K. Komatsu. 2004. Abeta (25-35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology 29, 860-868. https://doi.org/10.1038/sj.npp.1300388
  25. Van Gaal, L. F. and I. H. De Leeuw. 2003. Rationale and options for combination therapy in the treatment of type 2 diabetes. Diabetologia 46, 44-50.
  26. Verreth, W., J. Ganame, A. Mertens, H. Bernar, M. C. Herregods, and P. Holvoet. 2006. Peroxisome proliferator- activated receptor-alpha,gamma-agonist improves insulin sensitivity and prevents loss of left ventricular function in obese dyslipidemic mice. Arterioscler. Thromb. Vasc. Biol. 26, 922-928. https://doi.org/10.1161/01.ATV.0000207318.42066.bb
  27. Xie, J. T., H. H. Aung, J. A. Wu, A. S. Attele, and C. S. Yuan. 2002. Effects of American ginseng berry extract on blood glucose levels in ob/ob mice. Am. J. Chin. Med. 30, 187-194. https://doi.org/10.1142/S0192415X02000442
  28. Xie, J. T., Y. P. Zhou, L. Dey, A. S. Attele, J. A. Wu, M. Gu, K. S. Polonsky, and C. S. Yuan. 2002. Ginseng berry reduces blood glucose and body weight in db/db mice. Phytomedicine 9, 254-258. https://doi.org/10.1078/0944-7113-00106
  29. Yue, P. Y., N. K. Mak, Y. K. Cheng, K. W. Leung, T. B. Ng, D. T. Fan, H. W. Yeung, and R. N. Wong. 2007. Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides. Chin. Med. 2, 6. https://doi.org/10.1186/1749-8546-2-6

Cited by

  1. Effects of ingredients of Korean brown rice cookies on attenuation of cholesterol level and oxidative stress in high-fat diet-fed mice vol.11, pp.5, 2017, https://doi.org/10.4162/nrp.2017.11.5.365