References
- Agarwal, R., T. D'Souza, and P. J. Morin. 2005. Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res. 65, 7378-7385 https://doi.org/10.1158/0008-5472.CAN-05-1036
- Aggarwal, B. B. and H. Ichikawa. 2005. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 4, 1201-1215. https://doi.org/10.4161/cc.4.9.1993
- Anderson, J. M. 2006. Molecular structure of tight junctions and their role in epithelial transport. News Physiol. Sci. 16, 126-130.
- Bonnesen, C., I. M. Eggleston, and J. D. Hayes. 2001. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res. 61, 6120-6130.
- Brandi, G., M. Paiardini, B. Cervasi, C. Fiorucci, P. Filippone, C. De Marco, N. Zaffaroni, and M. Magnani. 2003. A new indole-3-carbinol tetrameric derivative inhibits cyclin-dependent kinase 6 expression, and induces G1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell lines. Cancer Res. 63, 4028-4036.
- Chinni, S. R., Y. Li, S. Upadhyay, P. K. Koppolu, and F. H. Sarkar. 2001. Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 20, 2927-2936. https://doi.org/10.1038/sj.onc.1204365
- Cho, H. J., S. Y, Park, E. J. Kim, J. K. Kim, and J. H. Park. 2011. 3,3'-Diindolylmethane inhibits prostate cancer development in the transgenic adenocarcinoma mouse prostate model. Mol. Carcinog. 50, 100-112. https://doi.org/10.1002/mc.20698
- Choi, H. S., M. C. Cho, H. G. Lee, and D. Y. Yoon. 2010. Indole-3-carbinol induces apoptosis through p53 and activation of caspase-8 pathway in lung cancer A549 cells. Food Chem. Toxicol. 48, 883-890. https://doi.org/10.1016/j.fct.2009.12.028
- Choi, Y. H., W. Y. Choi, S. H. Hong, S. O. Kim, G. Y. Kim, W. H. Lee, and Y. H. Yoo. 2009. Anti-invasive activity of sanguinarine through modulation of tight junctions and matrix metalloproteinase activities in MDA-MB-231 human breast carcinoma cells. Chem. Biol. Interact. 179, 185-191. https://doi.org/10.1016/j.cbi.2008.11.009
- Dashwood, R. H., A. T. Fong, D. N. Arbogast, L. F. Bjeldanes, J. D. Hendricks, and G. S. Bailey. 1994. Anticarcinogenic activity of indole-3-carbinol acid products: ultra-sensitive bioassay by trout embryo microinjection. Cancer Res. 54, 3617-3619.
- Davidson, B., R. Reich, C. G. Trope, T. L. Wang, and IeM. Shih. 2010. New determinates of disease progression and outcome in metastatic ovarian carcinoma. Histol. Histopathol. 25, 1591-1609.
- De Oliveira, S. S., I. M. De Oliveira, W. De Souza, and J. A. Morgado-Diaz. 2005. Claudins upregulation in human colorectal cancer. FEBS Lett. 579, 6179-6185. https://doi.org/10.1016/j.febslet.2005.09.091
- Duffy, M. I., T. M. Maguire, A. Hill, E. McDermott, and N. O'Higgins. 2000. Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res. 2, 252-257. https://doi.org/10.1186/bcr65
- Exon, J. H., E. H. South, B. A. Magnuson, and K. Hendrix. 2001. Effects of indole-3-carbinol on immune responses, aberrant crypt foci, and colonic crypt cell proliferation in rats. J. Toxicol. Environ. Health A 62, 561-573. https://doi.org/10.1080/152873901300007842
-
Gitter, A. H., K. Bendfeldt, K. Schmitz, J. D. Schulzke, C. J. Bentzel, and M. Fromm. 2000. Epithelial barrier defects in HT-29/B6 colonic cell monolayers induced by tumor necrosis factor-
$\alpha$ . Ann. N. Y. Acad. Sci. 915,193-203. - Goskonda, V. R., M. A. Khan, C. M. Hutak, and I. K. Reddy. 1999. Permeability characteristics of novel mydriatic agents using an in vitro cell culture model that utilizes SIRC rabbit corneal cells. J. Pharm. Sci. 88, 180-184. https://doi.org/10.1021/js980362t
- Hewitt, K. J., R. Agarwal, and P. J. Morin. 2006. The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer 6, 186-193. https://doi.org/10.1186/1471-2407-6-186
- Kojima, T., T. Tanaka, and H. Mori. 1994. Chemoprevention of spontaneous endometrial cancer in female Donryu rats by dietary indole-3-carbinol. Cancer Res. 54, 1446-1449.
- Kominsky, S. L. 2006. Claudins: emerging targets for cancer therapy. Expert Rev. Mol. Med. 8, 1-11.
- Liang, M., C. R. Ramsey, and F. G. Knox. 1999. The paracellular permeability of opossum kidney cells, a proximal tubule cell line. Kidney Int. 56, 2304-2308. https://doi.org/10.1046/j.1523-1755.1999.00787.x
- Loub, W. D., L. W. Wattenberg, and D. W. Davis. 1975. Aryl hydrocarbon hydroxylase induction in rat tissues by naturally occurring indoles of cruciferous plants. J. Natl. Cancer Inst. 54, 985-988.
- Matrisian, L. M. 1992. The matrix-degrading metalloproteinases. Bioessays 14, 455-463. https://doi.org/10.1002/bies.950140705
- Meng, Q., M. Qi, D. Z. Chen, R. Yuan, I. D. Goldberg, E. M. Rosen, K. Auborn, and S. Fan. 2000. Suppression of breast cancer invasion and migration by indole-3-carbinol:associated with up-regulation of BRCA1 and E-cadherin/catenin complexes. J. Mol. Med. 78, 155-165. https://doi.org/10.1007/s001090000088
- Mook, O. R., W. M. Frederiks, and C. J. Van Noorden. 2004. The role of gelatinases in colorectal cancer progression and metastasis. Biochim. Biophys. Acta. 1705, 69-89.
- Morin, P. J. 2005. Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res. 65, 9603-9606. https://doi.org/10.1158/0008-5472.CAN-05-2782
- Morse, M. A., S. D. LaGreca, S. G. Amin, and F. L. Chung. 1990. Effects of indole-3-carbinol on lung tumorigenesis and DNA methylation induced by 4-(methylnitros-amino)- 1-(3-pyridyl)-1-butanone (NNK) and on the metabolism and disposition of NNK in A/J mice. Cancer Res. 50, 2613-2617.
- Mullin, J. M., N. Agostino, E. Rendon-Huerta, and J. J. Thornton. 2005. Keynote review: epithelial and endothelial barriers in human disease. Drug Discov. Today 10, 395-408. https://doi.org/10.1016/S1359-6446(05)03379-9
- Ouban, A. and A. A. Ahmed. 2010. Claudins in human cancer: a review. Histol. Histopathol. 25, 83-90.
- Rangel, L. B., R. Agarwal, T. D'Souza, E. S. Pizer, P. L. Alò, W. D. Lancaster, L. Gregoire, D. R. Schwartz, K. R. Cho, and P. J. Morin. 2003. Tight junction proteins claudin-3 and claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. Clin. Cancer Res. 9, 2567-2575.
- Rogan, E. G. 2006. The natural chemopreventive compound indole-3-carbinol: state of the science. In Vivo 20, 221-228.
- Schneeberger, E. E. and R. D. Lynch. 2004. The tight junction: a multifunctional complex. Am. J. Physiol. Cell. Physiol. 286, 1213-1228. https://doi.org/10.1152/ajpcell.00558.2003
- Soler, A. P., R. D. Miller, K. V. Laughlin, N. Z. Carp, D. M. Klurfeld, and J. M. Mullin. 1999. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20, 1425-1431. https://doi.org/10.1093/carcin/20.8.1425
-
Takada, Y., M. Andreeff, and B. B. Aggarwal. 2005. Indole-3-carbinol suppresses NF-
${\kappa}B$ and$I{\kappa}B{\alpha}$ kinase activation, causing inhibition of expression of NF-${\kappa}B$ -regulated antiapoptotic and metastatic gene products and enhancement of apoptosis in myeloid and leukemia cells. Blood 106, 641-649. https://doi.org/10.1182/blood-2004-12-4589 - Tunggal, J. A., I. Helfrich, A. Schmitz, H. Schwarz, D. Günzel, M. Fromm, R. Kemler, T. Krieg, and C. M. Niessen. 2005. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J. 24, 1146-1156. https://doi.org/10.1038/sj.emboj.7600605
- Van Deun, K., F. Pasmans, F. Van Immerseel, R. Ducatelle, and F. Haesebrouck. 2008. Butyrate protects Caco-2 cells from Campylobacter jejuni invasion and translocation. Br. J. Nutr. 100, 480-484. https://doi.org/10.1017/S0007114508921693
- Van Itallie, C. M. and J. M. Anderson. 2006. Claudins and epithelial paracellular transport. Annu. Rev. Physiol. 68, 403-429. https://doi.org/10.1146/annurev.physiol.68.040104.131404
- Vihinen, P. R. Ala-aho, and V. M. Kähäri. 2005. Matrix metalloproteinases as therapeutic targets in cancer. Curr. Cancer Drug Targets 5, 203-220. https://doi.org/10.2174/1568009053765799
- Wang, P. H., J. L. Ko, H. T. Tsai, S. F. Yang, C. P. Han, L. Y. Lin, and G. D. Chen. 2008. Clinical significance of matrix metalloproteinase-2 in cancer of uterine cervix: a semiquantitative study of immunoreactivities using tissue array. Gynecol. Oncol. 108, 533-542. https://doi.org/10.1016/j.ygyno.2007.11.018
- Wattenberg, L. W. and W. D. Loub. 1978. Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles. Cancer Res. 38, 1410-1413.
- Williams, T. I., K. L. Toups, D. A. Saggese, K. R. Kalli, W. A. Cliby, and D. C. Muddiman. 2007. Epithelial ovarian cancer: disease etiology, treatment, detection, and investigational gene, metabolite, and protein biomarkers. J. Proteome Res. 6, 2936-2962. https://doi.org/10.1021/pr070041v
- Zhang, X. and D. Malejka-Giganti. 2003. Effects of treatment of rats with indole-3-carbinol on apoptosis in the mammary gland and mammary adenocarcinomas. Anticancer Res. 23, 2473-2479.
Cited by
- UnripeRubus coreanusMiquel suppresses migration and invasion of human prostate cancer cells by reducing matrix metalloproteinase expression vol.78, pp.8, 2014, https://doi.org/10.1080/09168451.2014.921550