DOI QR코드

DOI QR Code

Analytical Study on Effective Thermal Conductivity of Three-Phase Composites

3상 복합재의 등가열전도계수 예측에 대한 연구

  • Lee, Jae-Kon (School of Mechanical and Automotive Engineering, Catholic University of Daegu) ;
  • Kim, Jin-Gon (School of Mechanical and Automotive Engineering, Catholic University of Daegu)
  • 이재곤 (대구가톨릭대학교 기계자동차공학부) ;
  • 김진곤 (대구가톨릭대학교 기계자동차공학부)
  • Received : 2010.05.03
  • Accepted : 2011.07.07
  • Published : 2011.07.31

Abstract

Effective thermal conductivity of three-phase composites, consisting of matrix and two kinds of spherical inclusions, has been derived as an explicit form by extending modified Eshelby model (MEM) for two-phase composites. The present results are compared with those by differential effective medium model (DEMM), which are also compared with the experimental results of two- and three-phase composites in the literatures to be validated. For two-phase composites, the results by MEM are better than those by DEMM for the inclusion volume fraction smaller than 0.5. Comparisons between the results by two models and experimental results have been made for three-phase composite, resulting in that MEM predicts better than DEMM for smaller volume fraction of the inclusion having larger inclusion-to-matrix thermal conductivity ratio, but DEMM predicts better as its volume fraction increases. It has been observed through parametric study that its volume fraction is the critical factor affecting the deviation of predictions by the two models. The results by them show a good agreement with the three-phase composite proposed by Molina et al..

2상 복합재에 적용되어오던 수정된 Eshelby 모델(MEM)을 두 종류의 구형 입자를 포함하는 3상 복합재로 확장하여 복합재의 등가열전도계수를 간단히 양함수 형태로 표시한다. 이의 유효성 검증을 위해 이 결과를 미소등가물모델(DEMM)로 구한 결과와 비교하고, 또 참고문헌의 2상 및 3상 복합재의 실험결과와 비교한다. 2상 복합재의 경우 MEM이 충전재의 체적비 0.5 미만에서는 DEMM보다 잘 예측한다. 3상 복합재의 경우 모재 대비 큰 열전도계수비를 갖는 충전재의 체적비가 적은 경우 MEM이 잘 예측하나, 체적비가 증가할수록 DEMM이 잘 예측한다. 이 체적비가 두 모델의 예측결과에 결정적 영향을 주는 인자임이 변수들의 영향 연구를 통해 밝혀졌으며, Molina 등이 제안한 3상 복합재에 대해 MEM과 DEMM은 동등한 예측 수준을 보였다.

Keywords

References

  1. R. Tavangar, J.M. Molina, L. Weber, "Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast," Scripa Materialia, Vol. 56, pp. 357-360, 2007. https://doi.org/10.1016/j.scriptamat.2006.11.008
  2. D.P.H. Hasselman and L.F. Johnson, "Effective thermal conductivity of composites with interfacial thermal barrier resistance," J. Comp. Mater., Vol. 21, pp. 508-515, 1987. https://doi.org/10.1177/002199838702100602
  3. J.M. Molina, J. Narciso, L. Weber, A. Mortensen, E. Louis, "Thermal conductivity of Al-SiC composites with monomodal and bimodal particle size distribution," Materials Science and Engineering A, Vol. 480, pp. 483-488, 2008. https://doi.org/10.1016/j.msea.2007.07.026
  4. K. Chu, C. Jia, W. Tian, X. Liang, H. Chen, H. Guo, "Thermal conductivity of spark plasma sintering consolidated SiCp/Al composites containing pores: Numerical study and experimental validation," Composite: Part A, Vol. 41, pp. 161-167, 2010. https://doi.org/10.1016/j.compositesa.2009.10.001
  5. J.M. Molina, R. Prieto, J. Narciso and E. Louis, "The effect of porosity on the thermal conductivity of Al-12 wt.% Si/SiC composites," Scripta Materialia, Vol. 60, pp.582-585, 2009. https://doi.org/10.1016/j.scriptamat.2008.12.015
  6. J.M. Molina, M. Rheme, J. Carron, and L. Weber, "Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles," Scripta Materialia, Vol. 58, pp. 393-396, 2008. https://doi.org/10.1016/j.scriptamat.2007.10.020
  7. C. Zweben, "Advanced electronic packaging materials," Adv. Mater. Process, Vol. 163, pp. 33-37, 2005.
  8. P.W. Ruch, O. Beffort, S. Kleiner, L. Weber, P.J. Uggowitzer, "Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity," Comp. Sci. & Tech., Vol. 66, pp. 2677-2685, 2006. https://doi.org/10.1016/j.compscitech.2006.03.016
  9. A.N. Norris, A.J. Callegari and P. Sheng, "A generalized differential effective medium theory," J. Mech. Phys. Solids, Vol. 33, pp. 525-543, 1985. https://doi.org/10.1016/0022-5096(85)90001-8
  10. J.K. Lee, "Prediction of thermal conductivity of composites with spherical fillers by successive embedding," Arch. Appl. Mech., Vol. 77, pp. 453-460, 2007. https://doi.org/10.1007/s00419-006-0108-7
  11. H. Hatta and M. Taya, "Equivalent inclusion method for steady state heat conduction in composites", Int. J. Engineering Science, Vol. 24, No. 7, pp. 1159-1172, 1986. https://doi.org/10.1016/0020-7225(86)90011-X
  12. J.D. Eshelby, "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proc. of the Royal Society of London, Vol. A241, pp. 376-396, 1957.
  13. T. Mori and K. Tanaka, "Average stress in the matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, Vol. 21, pp. 571-574, 1973. https://doi.org/10.1016/0001-6160(73)90064-3
  14. C.P. Wong and R.S. Bollampally, "Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging", Journal of Applied Polymer Science, Vol. 74, pp. 3396-3403, 1999. https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3
  15. J.K. Lee, "Prediction of thermal conductivity of aligned short fibre composites with different fibre aspect ratios," Polymer & Polymer Composites, Vol. 15, No. 4, pp. 273-280, 2007.
  16. Y. Takao and M. Taya, "Thermal expansion coefficients and thermal stresses in an aligned short fiber composite with application to a short carbon fiber/aluminum", Journal of Applied Mechanics, Vol. 52, pp. 806-810, 1985. https://doi.org/10.1115/1.3169150
  17. J.S. Chang and C.H. Cheng, "Thermoelastic properties of short-coated fiber composites: Effects of length and orientation distribution", Composites Science and Technology, Vol. 55, pp. 329-341, 1995. https://doi.org/10.1016/0266-3538(95)00070-4

Cited by

  1. Prediction of Effective Thermal Conductivity of Composites with Coated Short Fibers of Different Aspect Ratios Using Hybrid Model vol.14, pp.6, 2013, https://doi.org/10.5762/KAIS.2013.14.6.2618
  2. Study on Analysis Technique Comparison and Evaluation of High Thermal Conductivity Concrete with Magnetite Aggregates and Steel Powder vol.26, pp.3, 2014, https://doi.org/10.4334/JKCI.2014.26.3.315