References
- R. Tavangar, J.M. Molina, L. Weber, "Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast," Scripa Materialia, Vol. 56, pp. 357-360, 2007. https://doi.org/10.1016/j.scriptamat.2006.11.008
- D.P.H. Hasselman and L.F. Johnson, "Effective thermal conductivity of composites with interfacial thermal barrier resistance," J. Comp. Mater., Vol. 21, pp. 508-515, 1987. https://doi.org/10.1177/002199838702100602
- J.M. Molina, J. Narciso, L. Weber, A. Mortensen, E. Louis, "Thermal conductivity of Al-SiC composites with monomodal and bimodal particle size distribution," Materials Science and Engineering A, Vol. 480, pp. 483-488, 2008. https://doi.org/10.1016/j.msea.2007.07.026
- K. Chu, C. Jia, W. Tian, X. Liang, H. Chen, H. Guo, "Thermal conductivity of spark plasma sintering consolidated SiCp/Al composites containing pores: Numerical study and experimental validation," Composite: Part A, Vol. 41, pp. 161-167, 2010. https://doi.org/10.1016/j.compositesa.2009.10.001
- J.M. Molina, R. Prieto, J. Narciso and E. Louis, "The effect of porosity on the thermal conductivity of Al-12 wt.% Si/SiC composites," Scripta Materialia, Vol. 60, pp.582-585, 2009. https://doi.org/10.1016/j.scriptamat.2008.12.015
- J.M. Molina, M. Rheme, J. Carron, and L. Weber, "Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles," Scripta Materialia, Vol. 58, pp. 393-396, 2008. https://doi.org/10.1016/j.scriptamat.2007.10.020
- C. Zweben, "Advanced electronic packaging materials," Adv. Mater. Process, Vol. 163, pp. 33-37, 2005.
- P.W. Ruch, O. Beffort, S. Kleiner, L. Weber, P.J. Uggowitzer, "Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity," Comp. Sci. & Tech., Vol. 66, pp. 2677-2685, 2006. https://doi.org/10.1016/j.compscitech.2006.03.016
- A.N. Norris, A.J. Callegari and P. Sheng, "A generalized differential effective medium theory," J. Mech. Phys. Solids, Vol. 33, pp. 525-543, 1985. https://doi.org/10.1016/0022-5096(85)90001-8
- J.K. Lee, "Prediction of thermal conductivity of composites with spherical fillers by successive embedding," Arch. Appl. Mech., Vol. 77, pp. 453-460, 2007. https://doi.org/10.1007/s00419-006-0108-7
- H. Hatta and M. Taya, "Equivalent inclusion method for steady state heat conduction in composites", Int. J. Engineering Science, Vol. 24, No. 7, pp. 1159-1172, 1986. https://doi.org/10.1016/0020-7225(86)90011-X
- J.D. Eshelby, "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proc. of the Royal Society of London, Vol. A241, pp. 376-396, 1957.
- T. Mori and K. Tanaka, "Average stress in the matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, Vol. 21, pp. 571-574, 1973. https://doi.org/10.1016/0001-6160(73)90064-3
- C.P. Wong and R.S. Bollampally, "Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging", Journal of Applied Polymer Science, Vol. 74, pp. 3396-3403, 1999. https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3
- J.K. Lee, "Prediction of thermal conductivity of aligned short fibre composites with different fibre aspect ratios," Polymer & Polymer Composites, Vol. 15, No. 4, pp. 273-280, 2007.
- Y. Takao and M. Taya, "Thermal expansion coefficients and thermal stresses in an aligned short fiber composite with application to a short carbon fiber/aluminum", Journal of Applied Mechanics, Vol. 52, pp. 806-810, 1985. https://doi.org/10.1115/1.3169150
- J.S. Chang and C.H. Cheng, "Thermoelastic properties of short-coated fiber composites: Effects of length and orientation distribution", Composites Science and Technology, Vol. 55, pp. 329-341, 1995. https://doi.org/10.1016/0266-3538(95)00070-4
Cited by
- Prediction of Effective Thermal Conductivity of Composites with Coated Short Fibers of Different Aspect Ratios Using Hybrid Model vol.14, pp.6, 2013, https://doi.org/10.5762/KAIS.2013.14.6.2618
- Study on Analysis Technique Comparison and Evaluation of High Thermal Conductivity Concrete with Magnetite Aggregates and Steel Powder vol.26, pp.3, 2014, https://doi.org/10.4334/JKCI.2014.26.3.315