
한국전자통신학회논문지 제6권 제1호

20

Node Monitoring 알고리듬과 NP 방법을 사용한 
효율적인 LDPC 복호방법

서희종
*

Node Monitoring Algorithm with Piecewise Linear Function Approximation for 
Efficient LDPC Decoding

Hee-jong Suh
*

요 약

본 논문에서는 NM(node monitoring) 알고리듬과 NP(Piecewise Linear Function Approximation)를 사용해

서 LDPC 코드 복호의 복잡도를 감소시키기 위한 효율적인 알고리듬을 제안한다. 이 NM 알고리듬은 새로운 

node-threshold 방법과 message passing 알고리듬에 근거해서 제안되었는데, 이에 NP 방법을 사용해서 알고

리듬의 복잡도를 더 줄일 수 있었다. 이 알고리듬의 효율성을 입증하기 위해서 모의 실험을 하였다. 모의실험 

결과, 기존에 잘 알려진 방법에 비해서 20% 정도 더 효율적이었다. 

ABSTRACT

In this paper, we propose an efficient algorithm for reducing the complexity of LDPC code decoding by using node monitoring 

(NM) and Piecewise Linear Function Approximation (NP). This NM algorithm is based on a new node-threshold method, and the 

message passing algorithm. Piecewise linear function approximation is used to reduce the complexity for more. This algorithm was 

simulated in order to verify its efficiency. Simulation results show that the complexity of our NM algorithm is reduced to about 

20%, compared with thoes of  well-known method.

키워드

LDPC codes, node monitoring, node-threshold, piecewise linear function approx

* 전남대학교 전자통신공학과(hjsuh@jnu.ac.kr)

접수일자 : 2010. 12. 12                       심사(수정)일자 : 2011. 01. 17                 게재확정일자 : 2011. 02. 09

I. INTRODUCTION 

Low-density parity-check (LDPC) codes were 

first proposed by Gallager in his doctoral 

dissertation [1] and were forgotten for several 

decades. The study of LDPC codes was resurrected 

in the mid-1990s because of its good performance 

and lower decoding complexity. LDPC codes are 

linear block codes which are falling only 0.04dB 

short of the Shannon limit [2].

LDPC codes algorithm has two parts, which are 

encoding and decoding. Its encoding is very easy, 

but its decoding is more complicated than the 

encoding. Decoding process of the LDPC code takes 

much time with the existing algorithms [1, 2, 3].

There are three approaches to reduce the 



Node Monitoring 알고리듬과 NP 방법을 사용한 효율적인 LDPC 복호방법

 21

complexity of LDPC decoding, which are to 

simplify the computation of the decoder, reduce the 

number of iterations of the decoder and diminish 

the messages of the iterations. In this approaches, 

there are many algorithms, such as the massage 

passing  algorithm (MPA) [2, 8], the min-sum 

algorithm [4], the various scheduling techniques [5], 

the forced convergence method [3, 6] and the 

bit-level stopping method [7]. The MPA algorithm 

is known as one of the most effective methods 

among the well-known methods [6].

In this paper, we propose a node monitoring 

(NM) algorithm. This method is a new one on 

reducing the decoding complexity, which is different 

from the other methods because it uses two 

monitoring vectors to monitor all the variable nodes 

and check nodes. For initialization the two vectors 

are filled with zeros. Some nodes are steady 

enough in case that these nodes achieve some 

node-threshold, at this case the vector for these 

nodes will stop receiving and updating process of 

these nodes. Our algorithm is a new method 

because our NM algorithm only monitors the check 

nodes instead of monitoring both the check and 

variable nodes. Although it does not monitor the 

variable nodes, it has the same performance in 

monitoring the messages of the check and variable 

nodes. But, this will finally reduce the complexity 

of the decoding process. And the piecewise linear 

function approximation [9] is a good way to reduce 

the function that is used in the program of the 

node monitoring algorithm.

To verify the efficiency of our algorithm, we do 

simulations. Then, because the MPA algorithm is 

known as most effective methods among the 

well-known methods, we did comparing our NP 

algorithm only with the MPA algorithm. With this 

comparison, we could get the conclusion that NP 

algorithm is more efficient method than the method. 

Therefore, we knew our algorithm is most efficient 

one than the well known methods. Its efficiency 

was shown to be improved by about 20% 

improvement.

This paper is organized as follows. Section II 

gives the background of the LDPC code. And 

Section III introduces a new decoding algorithm of 

the LDPC codes and the piecewise linear function 

approximation. In Section IV there are the results 

of the simulation of the algorithm. Conclusion is 

Section V. References are next.

Ⅱ. Related Algorithm and Problem

There are two types LDPC codes, regular LDPC 

codes and irregular LDPC codes, which can be 

represented by a Tanner graph with N variable 

nodes on the left (representing the bits of the code 

word) and M check nodes on the right 

(representing the parity checks constraints).

Fig 1 is a Tanner graph of a block length 8 (3, 

6). Nodes on the left hand side in Fig. 1 represent 

the code bits; nodes on the right hand side 

represent the parity check constraints. Throughout 

the decoding process, the nodes exchange messages 

  and   over the edges of the graph.

A. Standard brief propagation (BP) algorithm 

for iterative decoding of LDPC codes

We introduce the message passing algorithm 

(MPA), the most popular decoding algorithm [2], to 

make a our algorithm for the LDPC code decoding.

Fig. 1 Tanner graph of a block length 8 (3,6) regular 
LDPC code



한국전자통신학회논문지 제6권 제1호

22

We suppose a regular binary (, ) (, ) 

LDPC code C is used for error control over an 

AWGN channel with a mean of zero and power 

spectral density , and assume BPSK signals 

with unit energy, which maps a code word 

   ⋯   into a transmitted sequence 

  ⋯  , according to    , for 

   ⋯   and     or    . If 

   is a code word in C, and     is the 

corresponding transmitted sequence, then the 

received sequence is    , with 

   , where for ≦ ≦,   is Gaussian 

random variables with a mean of zero and variance 

. Let 
   be the parity check matrix 

which defines an LDPC code. We denote the set of 

bits that participate in check   by 

      and the set of checks in 

which bit   participates as      . 

And we denote   as the set   out of 

bit , and   as the set   out of check 

 . In order to explain the iterative decoding, we 

define the following notations with the th  
iteration:

• : The log-likelihood ratio (LLR) of bit   

which is from the channel output  . In belief 

propagation decoding, we initially set 

   .

• 
 : The LLR of bit   that check node m 

sends to bit node .

• 
 : The LLR of bit n that bit node   

sends to check node  .

• 
: The posteriori LLR of bit .

The standard belief propagation algorithm is 

carried out as follows [5]:

Initialization: Set   = 0, and the maximum 

number of iteration to  . For all m, n, set 

   ,   .

Step 1: (i) check-node update: for ≦≦  

and each ∈ :


  tanh 

′∈
tanh

′
(1)

  (ii) bit-node update: for ≦ ≦  and each 

∈ :


   

′∈
′ (2)


  

∈

 (3)

Step 2: Hard decision and stopping criterion test:

(i) Create 

 


 in which 


 if 


 , and 


 if 

≧ .

(ii) If ⋅


 or    , stop the decoding 

iteration and go to Step 3. Otherwise set     

and go to Step 1.

Step 3: Output 

  as the decoded code word.

B. The complexity reducing problem

The standard belief propagation algorithm for 

iterative decoding of LDPC codes has about two 

problems. First, for both the check-to-bit messages 

and bit-to-check messages, the more independent 

information is used to update the messages, the 

more reliable they become. Iteration   of the 

standard two steps implementation of the belief 

propagation algorithm uses all values ′  
computed at the previous iteration in (1). However 

certain values ′ could already be computed 

based on a partial computation of the values 
  

obtained from (2), and then be used instead of 

′  in (1) to compute the remaining values 


 . So, if we use certain values ′  to 

compute a partial values 
 , then we can reduce 

the complexity. Second, during the iterative 



Node Monitoring 알고리듬과 NP 방법을 사용한 효율적인 LDPC 복호방법

 23

decoding, the fact is that a large number of 

variable nodes converge to a strong belief after 

very few iterations, i.e., these bits have already 

been reliably decoded and we can skip updating 

their messages in subsequent iterations. If we have 

some ways to decide whether a node should update 

massage at a given iteration, then we also can 

reduce the complexity of the decoding process.

Ⅲ. NODE MONITORING ALGORITHM 
AND PIECEWISE LINEAR FUNCTION 

APPROXIMATION

For the two problems we described above, we 

introduce a decoding method based on the node 

monitoring algorithm. Most of the variable nodes 

achieve a stable state after very few iterations, 

barely to change the bit that it represents. So 

decoder could skip updating their messages in 

subsequent iterations. Node monitoring algorithm 

uses this phenomenon to reduce the complexity of 

the decoding. It updates messages only that 

instable nodes send at some iteration. In order to 

describe the degree of some nodes that have 

achieved a certain stable state, we define the 

"aggregate messages"   for each variable node as 

follows:

  
   ∈

  (4)

Checking   against the node-thresholds   will 

find the nodes that are stable.   is the confidence 

of the variable node to be in state 0 or 1, and the 

bigger   is the more stable variable node is. Now, 

we introduce the node monitoring algorithm in 

detail. Suppose a decoding system dealing with 

LDPC codes. First, we define two vectors to store 

the state of check nodes and variable nodes, 

respectively. They are deactivated-v and 

deactivated-c. For initialization, deactivated vectors 

are filled with zeros. Then the variable nodes get 

the information bits, and compute the value 

  . And they send these values as 

messages to their neighbor check nodes. When 

their neighbor check nodes receive these messages, 

the check nodes begin to compute their messages 


  and send them to variable nodes. Now, two 

kinds of nodes have finished their first message 

sending process. Variable nodes begin a deciding 

program to decide whether continue the next 

iteration or not. At this time, the variable nodes 

also compute   to compare with the 

node-threshold  . If it is bigger than the  , the 

element in deactivated-v to this node will change 

to 1 from 0. It is a flag that represents a stable 

node at that iteration. Then decoder checks each 

check nodes whether its neighbor variable nodes 

are all stable. If they are all in stable state, the 

element in deactivated-c to this node will change 

to 1 from 0. And this check node will not send the 

message to its neighbors, because its neighbors are 

all in stable state. But even if one of its neighbors 

is instable, the element in deactivated-c will still be 

0, and all its neighbor variable nodes will be 

reactivated by resuming their elements to 0 again 

in deactivated-v. Then begin the new iteration just 

as above except that check the deactivate vector 

before sending the messages. If the element for a 

node is 1, then skip this node’s message sending. 

Piecewise linear function approximation is used 

to reduce the function of tanh . The function of 
tanh  is not a linear function, so it will cost 

much time to compute its value. First we can write 

the equation (1) in another way: separate Piecewise 

linear function approximation is used to reduce the 

function of tanh . The function of tanh  is 
not a linear function, so it will cost much time to 

compute its value. First we can write the equation 

(1) in another way: separate 
  to



한국전자통신학회논문지 제6권 제1호

24


  (5)

  
                             

  
 

we then have


  

′∈
′∙ 

′∈
′ (6)

Where we have

  logtanh

  log

 

 
 (7) 

The function of   is fairly well behaved, 

and .     But,   is not a linear 

function.  So we use Piecewise linear function 

  to get an approximation of   and the 

complexity can thus be reduced for more. It is 

showed in Fig. 2.

What we have introduced above is the node 

monitoring algorithm. It reduces the complexity of 

the decoding process, but barely brings out 

degradation of the bit error rate (BER) and the 

frame error rate (FER) performance.

Fig. 2 The transfer function   used in check 
node calculations and the piecewise linear 

approximation of it.

Ⅳ. SIMULATION RESULTS

We simulated with a (3, 6) regular LDPC code 

with a block-length of 2000 bits and rate =0.5. 

Fig. 3 shows the bit error performance of three 

kinds of decoding algorithm for comparison. It is 

easy to see that the performance of the 

Combination of Node Monitoring Algorithm and 

Piecewise Linear Function Approximation algorithm 

(NM-PW) is much better.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
10-5

10-4

10-3

10-2

10-1

100
Bit Error Rate

B
E

R

Eb/No (dB)

 

 

MPA
F(x)
F1(x)

Fig. 3 Bit error performance of the LDPC code with a 
block-length of 2000 bits.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
16.5

17

17.5

18

18.5

19

19.5

20
ITERATION Rate

IT
E

R
A

TI
O

N
 P

er
 B

lo
ck

Eb/No (dB)

 

 

MPA
F(x)
F1(x)

Fig. 4 Frame error performance of the LDPC code 
with a block-length of 2000 bits.

 

Fig. 4 shows the frame error performance of 

three kinds of decoding algorithm for comparison. It 



Node Monitoring 알고리듬과 NP 방법을 사용한 효율적인 LDPC 복호방법

 25

is easy to see that the performance of the 

Combination of Node Monitoring Algorithm and 

Piecewise Linear

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
80

85

90

95

100

105

110

115

120
Massages Rate

M
as

sa
ge

s 
P

er
 B

it

Eb/No (dB)

 

 

MPA
F(x)
F1(x)

Fig. 5 Messages per bit of the LDPC code with a 
block-length of 2000 bits.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
10-3

10-2

10-1

100
Frame Error Rate

FE
R

Eb/No (dB)

 

 

MPA
F(x)
F1(x)

Fig. 6 Iterations per block of the LDPC code with a 
block-length of 2000 bits.

Function Approximation algorithm (NM-PW) is 

much better too. Fig. 5 shows the Messages per 

bit of three kinds of decoding algorithm for 

comparison. It is easy to see that the complexity of 

the Combination of Node Monitoring Algorithm and 

Piecewise Linear Function Approximation algorithm 

(NM-PW) is about 80% of the other two. Fig. 6 

shows the Iterations per block of three kinds of 

decoding algorithm for comparison. It is easy to 

see that the iterations of the Combination of the 

Node Monitoring Algorithm and Piecewise Linear 

Function Approximation algorithm (NM-PW) is less 

than the other two.

V. CONCLUSIONS

We have proposed a Combination of Node 

Monitoring Algorithm and Piecewise Linear 

Function Approximation algorithm (NP) to reduce 

the complexity of the LDPC decoding. With the 

simulation, we could see its better performance 

than existing well-known methods. 

So, we can conclude that this method is the best 

way to reduce efficiently the complexity of the 

decoder. But we must endeavor in order to achieve 

a more practical node monitoring decoder for LDPC 

codes. And we must try to make more 

improvement to get better performance.

REFERENCES 

 [1] R. G. Gallager, Low-Density Parity-Check 

Codes. MIT Press, 1963.

 [2] John R. Barry, "Low-Density Parity-Check 

Codes," Georgia Institute of Technology, 2001.

 [3] G. Fettweis, E. Zimmermann, and W. Rave, 

"Forced convergence decoding of LDPC 

codes: EXIT chart analysis and combination 

with node complexity reduction techniques," 

in Proc. 11th European Wireless Conference 

2005.

 [4] J. Zhang, M. Fossorier, D. Gu, and J. Zhang, 

"Two-dimensional correction for min-sum 

decoding of irregular LDPC codes," IEEE 

Communication Lett., vol. 10, pp. 180-182,  

2006.

 [5] Y. Wang, J. Zhang, M. Fossorier, and J. 

Yedidia, "Reduced latency iterative decoding 

of LDPC codes," IEEE Global Telecommu-

nication Conf. 2005.

 [6] D. Levin, E. Sharon, and S. Litsyn, "Lazy 

Scheduling for LDPC Decoding," IEEE 

Communication Lett., vol. 11, pp. 70-72, Jan. 



한국전자통신학회논문지 제6권 제1호

26

2007.

 [7] D. H. Kim and S. W. Kim, "Bit-level stopping 

of turbo decoding," IEEE Communication 

Lett., vol. 10, pp. 183–185, 2006.

 [8] T. J. Richardson and R. Urbanke, "The capa-

city of low-density parity check codes under 

message passing decoding," IEEE Trans. Inf. 

Theory, vol. 47, pp. 599–618, 2001.

 [9] X. Y. Hu, E. Eleftheriou, D.-M. Arnold, and 

A.  Dholakia. Efficient Implementations of the 

Sum-Product Algorithm for Decoding LDPC 

Codes. Proceedings of the IEEE Globe Com 

2001, pp. 1036–1036E, 2001.

저자 소개

서희종(Hee-jong Suh)

1975년 한국항공대학교 항공통신

공학과 졸업(공학사)

1984년 중앙대학교 대학원 전자

공학과 졸업(공학석사)

1996년 중앙대학교 대학원 전자공학과 졸업(공학

박사)

1980년∼2006년 여수대학교 전자통신공학과 교수

2006년∼현재 전남대학교 전자통신공학과 교수

※ 관심분야 : 컴퓨터 네트위크, 인터넷통신, 위성  

통신


